Question

A force $$\overrightarrow F = 3\hat i + 2\hat j - 4\hat k$$     is applied at the point $$\left( {1,\, - 1,\,2} \right).$$   What is the moment of the force about the point $$\left( {2,\, - 1,\,3} \right)\,?$$

A. $$\hat i + 4\hat j + 4\hat k$$
B. $$2\hat i + \hat j + 2\hat k$$
C. $$2\hat i - 7\hat j - 2\hat k$$  
D. $$2\hat i + 4\hat j - \hat k$$
Answer :   $$2\hat i - 7\hat j - 2\hat k$$
Solution :
Let point $$P$$ is $$\left( {1,\, - 1,\,2} \right)$$
and point $$Q$$ is $$\left( {2,\, - 1,\,3} \right)$$
$$ \Rightarrow $$  Position vector of $$P$$ w.r.t. $$Q$$ is
$$\eqalign{ & \overrightarrow r = \left( {1 - 2} \right)\hat i + \left( { - 1 + 1} \right)\hat j + \left( {2 - 3} \right)\hat k \cr & \Rightarrow \overrightarrow r = - \hat i + 0\hat j - \hat k{\text{ and }}\overrightarrow F = 3\hat i + 2\hat j - 4\hat k \cr} $$
\[ \Rightarrow {\rm{Moment}} = \overrightarrow r \times \overrightarrow F = \left| \begin{array}{l} \,\,\,\,\,\hat i\,\,\,\,\,\hat j\,\,\,\,\,\,\,\,\hat k\\ - 1\,\,\,\,0\,\,\, - 1\\ \,\,\,\,\,3\,\,\,\,2\,\,\, - 4 \end{array} \right|\]
$$\eqalign{ & = \hat i\left( {0 + 2} \right) - \hat j\left( {4 + 3} \right) + \hat k\left( { - 2 + 0} \right) \cr & = 2\hat i - 7\hat j - 2\hat k \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section