Solution :
| L |
O |
Y |
| 2 |
2 |
4 |
| $$ \geqslant 1$$ |
$$ \geqslant 1$$ |
$$2 \leqslant $$ |
⟹
| L |
O |
Y |
| 1 |
1 |
2 |
| 1 |
2 |
1 |
| 2 |
1 |
1 |
| 2 |
2 |
0 |
Required number of ways
$$\eqalign{
& = {\,^2}{C_1} \times {\,^2}{C_1} \times {\,^4}{C_2} \times {\,^2}{C_1} \times {\,^2}{C_2} \times {\,^4}{C_1} + {\,^2}{C_2} \times {\,^2}{C_1} \times {\,^4}{C_1} + {\,^2}{C_2} \times {\,^2}{C_2} \times {\,^4}{C_0} \cr
& = 2 \times 2 \times \frac{{4 \times 3}}{2} + 2 \times 1 \times 4 + 1 \times 2 \times 4 + 1 \times 1 \times 1 \cr
& = 24 + 8 + 8 + 1 = 41. \cr} $$