Question

$$\overrightarrow a ,\,\overrightarrow b $$  and $$\overrightarrow c $$ are three vectors with magnitude $$\left| {\overrightarrow a } \right| = 4,\,\left| {\overrightarrow b } \right| = 4,\,\left| {\overrightarrow c } \right| = 2$$       and such that $$\overrightarrow a $$ is perpendicular to $$\left( {\overrightarrow b + \overrightarrow c } \right),\,\overrightarrow b $$   is perpendicular to $$\left( {\overrightarrow c + \overrightarrow a } \right)$$   and $$\overrightarrow c $$ is perpendicular to $$\left( {\overrightarrow a + \overrightarrow b } \right).$$   It follows that $$\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|$$    is equal to :

A. 9
B. 6  
C. 5
D. 4
Answer :   6
Solution :
Since, $$\overrightarrow a ,\,\overrightarrow b $$  and $$\overrightarrow c $$ are three vectors with magnitude $$\left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right| = 4{\text{ and }}\left| {\overrightarrow c } \right| = 2$$
As $$\overrightarrow a $$ is perpendicular to $$\left( {\overrightarrow b + \overrightarrow c } \right)$$
$$ \Rightarrow \overrightarrow a .\left( {\overrightarrow b + \overrightarrow c } \right) = 0{\text{ or }}\overrightarrow a .\overrightarrow b + \overrightarrow a .\overrightarrow c = 0......\left( {\text{i}} \right)$$
$$\overrightarrow b $$ is perpendicular to $$\left( {\overrightarrow c + \overrightarrow a } \right)$$
$$ \Rightarrow \overrightarrow b .\left( {\overrightarrow c + \overrightarrow a } \right) = 0{\text{ or }}\overrightarrow b .\overrightarrow c + \overrightarrow b .\overrightarrow a = 0......\left( {{\text{ii}}} \right)$$
$$\overrightarrow c $$ is perpendicular to $$\left( {\overrightarrow a + \overrightarrow b } \right)$$
$$ \Rightarrow \overrightarrow c .\left( {\overrightarrow a + \overrightarrow b } \right) = 0{\text{ or }}\overrightarrow c .\overrightarrow a + \overrightarrow c .\overrightarrow b = 0......\left( {{\text{iii}}} \right)$$
From equations $$\left( {\text{i}} \right),\,\left( {{\text{ii}}} \right)$$  and $$\left( {{\text{iii}}} \right),$$  we get
$$ \Rightarrow 2\left( {\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a } \right) = 0$$
Further we know that
$$\eqalign{ & {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} + \overrightarrow {2a} .\overrightarrow b + \overrightarrow {2b} .\overrightarrow c + \overrightarrow {2c} .\overrightarrow a \cr & \Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = {4^2} + {4^2} + {2^2} + 0 \cr & \Rightarrow {\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2} = 36 \cr & {\text{or }}\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right| = 6 \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section