Question

$$A\left( {3,\,2,\,0} \right),\,B\left( {5,\,3,\,2} \right)$$     and $$C\left( { - 9,\,6,\, - 3} \right)$$   are the vertices of a triangle $$ABC.$$   If the bisector of $$\angle ABC$$   meets $$BC$$  at $$D$$, then coordinates of $$D$$ are :

A. $$\left( {\frac{{19}}{8},\,\frac{{57}}{{16}},\,\frac{{17}}{{16}}} \right)$$  
B. $$\left( { - \frac{{19}}{8},\,\frac{{57}}{{16}},\,\frac{{17}}{{16}}} \right)$$
C. $$\left( {\frac{{19}}{8},\, - \frac{{57}}{{16}},\,\frac{{17}}{{16}}} \right)$$
D. none of these
Answer :   $$\left( {\frac{{19}}{8},\,\frac{{57}}{{16}},\,\frac{{17}}{{16}}} \right)$$
Solution :
$$D$$ divides $$BC$$  in the ratio $$AB : AC$$   i.e. $$3 : 13.$$
Therefore, coordinates of $$D$$ are,
$$\eqalign{ & \left( {\frac{{3 \times - 9 + 13 \times 5}}{{3 + 13}},\,\frac{{3 \times 6 + 13 \times 5}}{{3 + 13}},\,\frac{{3 \times - 3 + 13 \times 2}}{{3 + 13}}} \right) \cr & {\text{or }}\left( {\frac{{19}}{8},\,\frac{{57}}{{16}},\,\frac{{17}}{{16}}} \right) \cr} $$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section