Question

$$\int_0^{10\pi } {\left| {\sin \,x\,} \right|dx} $$    is-

A. $$20$$  
B. $$8$$
C. $$10$$
D. $$18$$
Answer :   $$20$$
Solution :
$$I = \int\limits_0^{10\pi } {\left| {\sin \,x\,} \right|dx} = 10\int\limits_0^\pi {\left| {\sin \,x\,} \right|dx} = 10\int\limits_0^\pi {\sin \,x\,dx} $$
[$$\because \left| {\sin \,x} \right|$$   is periodic with period $$\pi $$ and $$\sin \,x > 0$$   if $$0 < x < \pi $$   ]
$$I = 20\int\limits_0^{\frac{\pi }{2}} {\sin \,x\,dx = 20\left[ { - \cos \,x} \right]_0^{\frac{\pi }{2}} = 20} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section