Question

$$\int\limits_0^\infty {\frac{{dx}}{{\left( {{x^2} + {a^2}} \right)\left( {{x^2} + {b^2}} \right)}}} {\text{ is ?}}$$

A. $$\frac{{\pi ab}}{{a + b}}$$
B. $$\frac{\pi }{{2\left( {a + b} \right)}}$$
C. $$\frac{\pi }{{2ab\left( {a + b} \right)}}$$  
D. $$\frac{{\pi \left( {a + b} \right)}}{{2ab}}$$
Answer :   $$\frac{\pi }{{2ab\left( {a + b} \right)}}$$
Solution :
$$\eqalign{ & \int\limits_0^\infty {\frac{{dx}}{{\left( {{x^2} + {a^2}} \right)\left( {{x^2} + {b^2}} \right)}}} \cr & {\text{ = }}\frac{1}{{{b^2} - {a^2}}}\int\limits_0^\infty {\frac{{\left( {{x^2} + {b^2}} \right) - \left( {{x^2} + {a^2}} \right)}}{{\left( {{x^2} + {a^2}} \right)\left( {{x^2} + {b^2}} \right)}}} \cr & {\text{ = }}\frac{1}{{{b^2} - {a^2}}}\int\limits_0^\infty {\left[ {\frac{1}{{{x^2} + {a^2}}} - \frac{1}{{{x^2} + {b^2}}}} \right]dx} \cr & {\text{ = }}\frac{1}{{{b^2} - {a^2}}}\left[ {\frac{1}{a}{{\tan }^{ - 1}}\frac{x}{a} - \frac{1}{b}{{\tan }^{ - 1}}\frac{x}{b}} \right]_0^\infty \cr & {\text{ = }}\frac{1}{{{b^2} - {a^2}}}\left[ {\frac{\pi }{{2a}} - \frac{\pi }{{2b}}} \right] \cr & {\text{ = }}\frac{\pi }{{2ab\left( {a + b} \right)}} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section