Question

$$\int\limits_0^\infty {\left[ {\frac{2}{{{e^x}}}} \right]} dx$$   is equal to ( $$\left[ x \right] = $$  greatest integer $$ \leqslant x$$  )

A. $${\log _e}2$$  
B. $${e^2}$$
C. $$0$$
D. $$\frac{2}{e}$$
Answer :   $${\log _e}2$$
Solution :
$$\eqalign{ & {\text{We have, if }}{e^x} > 2,\,\frac{2}{{{e^x}}} < 1 \cr & {\text{Also, }}\frac{2}{{{e^x}}} > 0 \Rightarrow 0 < \frac{2}{{{e^x}}} < 1 \cr & \therefore \,{\text{If }}x > {\log _e}2,\,\left[ {\frac{2}{{{e^x}}}} \right] = 0 \cr & {\text{Again if }}0 < x < {\log _e}2{\text{ then }}1 < {e^x} < 2 \cr & \Rightarrow 1 > \frac{1}{{{e^x}}} > \frac{1}{2} \cr & \Rightarrow 2 > \frac{2}{{{e^x}}} > 1{\text{ or }}1 < \frac{2}{{{e^x}}} < 2 \cr & \therefore \,\left[ {\frac{2}{{{e^x}}}} \right] = 1 \cr & \therefore \,I = \int\limits_0^\infty {\left[ {\frac{2}{{{e^x}}}} \right]dx} \cr & = \int\limits_0^\infty {\left[ {2{e^{ - x}}} \right]} dx \cr & = \int\limits_0^{\log \,2} {\left[ {2{e^{ - x}}} \right]dx} + \int\limits_{\log \,2}^\infty {\left[ {2{e^{ - x}}} \right]} dx \cr & = \int\limits_0^{\log \,2} {\left( 1 \right)dx} + \int\limits_{\log \,2}^\infty {\left( 0 \right)} dx \cr & = {\log _e}2 \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section