171.
Oxidation state of $$S$$ in $${H_2}{S_2}{O_8}$$ is
A
+ 6
B
+ 7
C
+ 8
D
0
Answer :
+ 6
View Solution
Discuss Question
$${H_2}{S_2}{O_8};$$ \[H-O-\underset{\begin{smallmatrix}
\parallel \\
O
\end{smallmatrix}}{\overset{\begin{smallmatrix}
O \\
\parallel
\end{smallmatrix}}{\mathop{S}}}\,-O-O-\underset{\begin{smallmatrix}
\parallel \\
O
\end{smallmatrix}}{\overset{\begin{smallmatrix}
O \\
\parallel
\end{smallmatrix}}{\mathop{S}}}\,-O-H\]
Two oxygen atoms are involved in peroxide linkage, hence oxidation number will be -1 (each).
$${H_2}{S_2}{O_8}:2\mathop {\left( { + 1} \right)}\limits_H + 2\mathop {\left( x \right)}\limits_S + 2\mathop {\left( { - 1} \right)}\limits_{\left( {O - O} \right)} + 6\mathop {\left( { - 2} \right)}\limits_O $$ $$ = 0 \Rightarrow x = + 6$$
172.
$$M{n^{3 + }}$$ ions are unstable in solution and undergo disproportionation to give $$M{n^{2 + }},Mn{O_2}$$ and $${H^ + }$$ ions. What will be the balanced equation for the reaction?
A
$$3M{n^{3 + }} + 4{H_2}O \to $$ $$Mn{O_2} + M{n^{2 + }} + 8{H^ + }$$
B
$$M{n^{3 + }} + 4{H_2}O \to Mn{O_2} + 4{H^ + }$$
C
$$Mn + 2{H_2}O \to Mn{O_2} + 4{H^ + }$$
D
$$2M{n^{3 + }} + 2{H_2}O \to $$ $$Mn{O_2} + M{n^{2 + }} + 4{H^ + }$$
Answer :
$$2M{n^{3 + }} + 2{H_2}O \to $$ $$Mn{O_2} + M{n^{2 + }} + 4{H^ + }$$
View Solution
Discuss Question
Skeletal equation is $$M{n^{3 + }} \to M{n^{2 + }} + Mn{O_2} + {H^ + }$$
Oxidation half equation : $$M{n^{3 + }} \to \mathop {Mn{O_2}}\limits^{ + 4} $$
or $$M{n^{3 + }} + 2{H_2}O \to $$ $$Mn{O_2} + 4{H^ + } + {e^ - }...\left( {\text{i}} \right)$$
Reduction half equation : $$M{n^{3 + }} \to M{n^{2 + }}$$
or $$M{n^{3 + }} + {e^ - } \to M{n^{2 + }}...\left( {{\text{ii}}} \right)$$
Adding eq. (i) and (ii) the balanced equation is $$2M{n^{3 + }} + 2{H_2}O \to $$ $$Mn{O_2} + M{n^{2 + }} + 4{H^ + }$$
173.
Amongst the following, identify the species with an atom in +6 oxidation state :
A
$${\left[ {Mn{O_4}} \right]^ - }$$
B
$${\left[ {Cr{{\left( {CN} \right)}_6}} \right]^{3 - }}$$
C
$$C{r_2}{O_3}$$
D
$$Cr{O_2}C{l_2}$$
Answer :
$$Cr{O_2}C{l_2}$$
View Solution
Discuss Question
$$\eqalign{
& Cr{O_2}\,C{l_2} \cr
& {\text{Let }}O.{\text{ No}}{\text{. of }}Cr = x \cr
& \therefore \,\,x + 2\left( { - 2} \right) + 2\left( { - 1} \right) = 0 \cr
& x - 4 - 2 = 0 \cr
& \therefore \,\,x = + 6 \cr} $$
174.
Given :
$$XN{a_2}HAs{O_3} + YNaBr{O_3} + ZHCl$$ $$ \to NaBr + {H_3}As{O_4} + NaCl$$
The values of $$X,Y$$ and $$Z$$ in the above redox reaction are respectively :
A
2, 1, 2
B
2, 1, 3
C
3, 1, 6
D
3, 1, 4
Answer :
3, 1, 6
View Solution
Discuss Question
On balancing the given reaction, we find
$$3N{a_2}HAs{O_3} + NaBr{O_3} + 6HCl$$ $$ \to 6NaCl + 3{H_3}As{O_4} + NaBr$$
175.
What are the oxidation states of phosphorus in the following compounds?
$${H_3}P{O_2},{H_3}P{O_4},P{H_3},HP{O_3}$$
A
+1, +3, +3, +5
B
+3, +3, +5, +5
C
+1, +2, +3, +5
D
+1, +5, -3, +5
Answer :
+1, +5, -3, +5
View Solution
Discuss Question
$$\eqalign{
& {H_3}P{O_2}: + 3 + x - 4 = 0 \Rightarrow x = + 1 \cr
& {H_3}P{O_4}: + 3 + x - 8 = 0 \Rightarrow x = + 5 \cr
& P{H_3}:x + 3 = 0 \Rightarrow x = - 3 \cr
& HP{O_3}: + 1 + x - 6 = 0 \Rightarrow x = + 5 \cr} $$
176.
Match the column I (reactions) with column II ( type of reactions ) and mark the appropriate choice.
Column I
Comun II
a.
\[3M{{g}_{\left( s \right)}}+{{N}_{2\left( g \right)}}\xrightarrow{\Delta }M{{g}_{3}}{{N}_{2\left( s \right)}}\]
(i)
Displacement
b.
\[Na{{H}_{\left( s \right)}}+{{H}_{2}}{{O}_{\left( l \right)}}\to NaO{{H}_{\left( aq \right)}}+{{H}_{2\left( g \right)}}\]
(ii)
Decomposition
c.
\[3ClO_{\left( aq \right)}^{-}\to 2Cl_{\left( aq \right)}^{-}+ClO_{3\left( aq \right)}^{-}\]
(iii)
Combination
d.
\[2KCl{{O}_{3\left( s \right)}}\to 2KC{{l}_{\left( s \right)}}+3{{O}_{2\left( g \right)}}\]
(iv)
Disproportionation
A
a - 1, b - 3 , c - 2, d - 4
B
a - 4, b - 3 , c - 2, d - 1
C
a - 2, b - 1 , c - 3, d - 4
D
a - 3, b - 1 , c - 4, d - 2
Answer :
a - 3, b - 1 , c - 4, d - 2
View Solution
Discuss Question
No explanation is given for this question. Let's discuss the answer together.
177.
Write the following ions in order of decreasing capacity to accept electrons.
$${H^ + },M{g^{2 + }},{K^ + },A{g^ + },Z{n^{2 + }}$$
A
$$A{g^ + } > {H^ + } > Z{n^{2 + }} > M{g^{2 + }} > {K^ + }$$
B
$${H^ + } > Z{n^{2 + }} > M{g^{2 + }} > {K^ + } > A{g^ + }$$
C
$${K^ + } > M{g^{2 + }} > Z{n^{2 + }} > {H^ + } > A{g^ + }$$
D
$$M{g^{2 + }} > Z{n^{2 + }} > {K^ + } > A{g^ + } > {H^ + }$$
Answer :
$$A{g^ + } > {H^ + } > Z{n^{2 + }} > M{g^{2 + }} > {K^ + }$$
View Solution
Discuss Question
Based on the values of standard reduction potentials the sequence is followed.