301.
Among the following species, identify the isostructural pairs. $$N{F_3},NO_3^ - ,B{F_3},{H_3}{O^ + },H{N_3}$$
A
$$\left[ {N{F_3},NO_3^ - } \right]{\text{and}}\left[ {B{F_3},{H_3}{O^ + }} \right]$$
B
$$\left[ {N{F_3},H{N_3}} \right]{\text{and}}\left[ {NO_3^ - ,B{F_3}} \right]$$
C
$$\left[ {N{F_3},{H_3}{O^ + }} \right]{\text{and}}\left[ {NO_3^ - ,B{F_3}} \right]$$
D
$$\left[ {N{F_3},{H_3}{O^ + }} \right]{\text{and}}\left[ {N{H_3},B{F_3}} \right]$$
Answer :
$$\left[ {N{F_3},{H_3}{O^ + }} \right]{\text{and}}\left[ {NO_3^ - ,B{F_3}} \right]$$
View Solution
Discuss Question
Structure of a molecule can be ascertained by knowing the number of hybrid bonds in the molecule. Thus
In $$N{F_3}:H = \frac{1}{2}\left( {5 + 3 - 0 + 0} \right) = 4$$
Thus $$N$$ in $$N{F_3}$$ is $$s{p^3}$$ hybridized as 4 orbitals are involved in bonding.
In $$NO_3^ - :H = \frac{1}{2}\left( {5 + 0 - 0 + 1} \right) = 3$$
Thus $$N$$ in $$NO_3^ - $$ is $$s{p^2}$$ hybridized as 3 orbitals are involved in bonding
$$B{F_3}:H = \frac{1}{2}\left( {3 + 3 - 0 + 0} \right) = 3$$
Thus $$B$$ in $$B{F_3}$$ is $$s{p^2}$$ hybridized and 3 orbitals are involved in bonding
In $${H_2}{O^ + }:H = \frac{1}{2}\left( {6 + 3 - 1 + 0} \right) = 4$$
Thus $$O$$ in $${H_2}{O^ + }$$ is $$s{p^3}$$ hybridized as 4 orbitals are involved in bonding.
Thus, isostructural pairs are $$\left[ {N{F_3},{H_3}{O^ + }} \right]$$ and $$\left[ {NO_3^ - ,B{F_3}} \right].$$
302.
The high density of water compared to ice is due to
A
hydrogen bonding interactions
B
dipole-dipole interactions
C
dipole-induced dipole interactions
D
induced dipole-induced dipole interactions
Answer :
hydrogen bonding interactions
View Solution
Discuss Question
Due to polar nature, water molecules show intermolecular hydrogen bonding as
whereas the ice has open structure with large number of vacant spaces. So, density of ice is lower than water.
303.
Which type of overlapping is shown by $$p\left( {{p_x},{p_y}\,{\text{and}}\,{p_z}} \right)$$ - orbitals ?
A
Two end to end and one sidewise overlap
B
Two sidewise and one end to end overlap
C
Three sidewise overlaps
D
Three end to end overlaps
Answer :
Two sidewise and one end to end overlap
View Solution
Discuss Question
$${{p_z}}$$ orbital by convention undergoes end to end overlapping and $${{p_x},{p_y}}$$ undergo sidewise overlapping.
304.
Main axis of a diatomic molecule is $$Z.\,AO's\,{p_x}$$ and $${p_y}$$ overlap to form which of the following orbitals?
A
$$\pi - MO$$
B
$$\sigma - MO$$
C
$$\delta - MO$$
D
$${\text{No bond will form}}$$
Answer :
$${\text{No bond will form}}$$
View Solution
Discuss Question
$${p_x}$$ and $${p_y}$$ orbitals do not have proper orientation to overlap and hence no bond is formed.
305.
In which of the following species the interatomic bond angle is $${190^0}\,\,{28'}$$ ?
A
$$N{H_3},{\left( {B{F_4}} \right)^{ - 1}}$$
B
$${\left( {N{H_4}} \right)^ + },B{F_3}$$
C
$$N{H_3},B{F_4}$$
D
$${\left( {N{H_2}} \right)^{ - 1}},B{F_3}.$$
Answer :
$$N{H_3},{\left( {B{F_4}} \right)^{ - 1}}$$
View Solution
Discuss Question
In $$N{H_3}$$ and $$BF_4^ - $$ the hybridisation is $$s{p^3}$$ and the bond angle is almost $${190^0}\,\,{28'}.$$
306.
The group having triangular planar structures is :
A
$$B{F_3},N{F_3},CO_3^{2 - }$$
B
$$CO_3^{2 - },NO_3^ - ,S{O_3}$$
C
$$N{H_3},S{O_3},CO_3^{2 - }$$
D
$$NC{l_3},BC{l_3},S{O_3}$$
Answer :
$$CO_3^{2 - },NO_3^ - ,S{O_3}$$
307.
The molecule having one unpaired electron is :
A
$$NO$$
B
$$CO$$
C
$$C{N^ - }$$
D
$${O_2}$$
Answer :
$$NO$$
View Solution
Discuss Question
NOTE THIS STEP: Write the electronic configuration of each species according to molecular orbital theory.
$$NO\left( {15{e^ - }} \right) - \sigma 1{s^2},{\sigma ^*}1{s^2},\sigma 2{s^2},{\sigma ^*}2{s^2},\sigma 2p_x^2,\left\{ {\pi 2p_y^2 = \pi 2p_z^2,\left\{ {{\pi ^*}2p_y^1 = {\pi ^*}2p_z^0} \right.\,\,1\,{\text{unpaired}}\,{\text{electron}}.} \right.$$
$$CO\left( {14{e^ - }} \right) - \sigma 1{s^2},{\sigma ^*}1{s^2},\sigma 2{s^2},{\sigma ^*}2{s^2},\left\{ {\pi 2p_y^2 = \pi 2p_z^2,\sigma 2p_x^2} \right.\,\,\,\,\,{\text{no}}\,{\text{unpaired}}\,{\text{electron}}$$
$$C{N^ - }\left( {14{e^ - }} \right) - \sigma 1{s^2},{\sigma ^*}1{s^2},\sigma 2{s^2},{\sigma ^*}2{s^2},\left\{ {\pi 2p_y^2 = \pi 2p_z^2,\sigma 2p_x^2} \right.$$
$${O_2}\left( {16{e^ - }} \right) - \sigma 1{s^2},{\sigma ^*}1{s^2},\sigma 2{s^2},{\sigma ^*}2{s^2},\sigma 2p_x^2\left\{ {\pi 2p_y^2 = \pi 2p_z^2,\left\{ {{\pi ^*}2p_y^1 = {\pi ^*}2p_z^1;} \right.} \right.\,\,{\text{Two}}\,\,\,{\text{unpaired}}\,{\text{electrons}}{\text{.}}$$
308.
Which molecule is depicted by the given ball and stick models?
A
$$\left( {\text{i}} \right)BeC{l_2},\left( {{\text{ii}}} \right)C{H_4}$$
B
$$\left( {\text{i}} \right)B{F_3},\left( {{\text{ii}}} \right)PC{l_5}$$
C
$$\left( {\text{i}} \right)B{F_4},\left( {{\text{ii}}} \right)C{H_4}$$
D
$$\left( {\text{i}} \right)BeC{l_2},\left( {{\text{ii}}} \right)PC{l_5}$$
Answer :
$$\left( {\text{i}} \right)B{F_3},\left( {{\text{ii}}} \right)PC{l_5}$$
View Solution
Discuss Question
$$B{F_3} - $$ Trigonal planar with bond angle $${120^ \circ }.$$
$$PC{l_5} - $$ Trigonal bipyramidal with bond angles $${120^ \circ }$$ and $${90^ \circ }.$$
309.
Fill in the blanks with appropriate choice.
Bond order of $$N_2^ + $$ is $$\underline P $$ while that of $${N_2}$$ is $$\underline Q .$$ Bond order of $$O_2^ + $$ is $$\underline R $$ while that of $${O_2}$$ is $$\underline S .$$ $$N - N$$ bond distance $$\underline T ,$$ when $${N_2}$$ changes to $$N_2^ + $$ and when $${O_2}$$ changes to $$O_2^ + ,$$ the $$O - O$$ bond distance is $$\underline U .$$
$$P$$
$$Q$$
$$R$$
$$S$$
$$T$$
$$U$$
(a)
2
2.5
2.5
1
increases
decreases
(b)
2.5
3
2
1.5
decreases
increases
(c)
3
2
1.5
1
increases
decreases
(d)
2.5
3
2.5
2
increases
decreases
A
(a)
B
(b)
C
(c)
D
(d)
Answer :
(d)
View Solution
Discuss Question
$$N_2^ + :\left( {\sigma 1{s^2}} \right)\left( {{\sigma ^ * }1{s^2}} \right)\left( {\sigma 2{s^2}} \right)$$ $$\left( {{\sigma ^ * }2{s^2}} \right)\left( {\pi 2p_x^2 = \pi 2p_y^2} \right)\left( {\sigma 2p_z^1} \right)$$
$$\eqalign{
& B.O. = \frac{1}{2} \times \left( {9 - 4} \right) = 2.5 \cr
& {N_2}:B.O. = \frac{1}{2} \times \left( {10 - 4} \right) = 3 \cr} $$
$$O_2^ + :\left( {\sigma 1{s^2}} \right)\left( {{\sigma ^ * }1{s^2}} \right)\left( {\sigma 2{s^2}} \right)$$ $$\left( {{\sigma ^ * }2{s^2}} \right)\left( {\sigma 2p_z^2} \right)\left( {\pi 2p_x^2 = \pi 2p_y^2} \right)$$ $$\left( {{\pi ^ * }2p_x^1} \right)$$
$$B.O. = \frac{1}{2} \times \left( {10 - 5} \right) = 2.5;$$ $${O_2}:B.O. = \frac{1}{2} \times \left( {10 - 6} \right) = 2$$
Since $$N_2^ + $$ has lower bond order than $${N_2},$$ bond length of $$N-N$$ in $$N_2^ + $$ increases. In $$O_2^ + ,$$ bond order increases from 2 to 2.5 hence, bond length decreases.
310.
Which of the following species exhibits the diamagnetic behaviour?
A
$$NO$$
B
$$O_2^{2 - }$$
C
$$O_2^ + $$
D
$${O_{2'}}$$
Answer :
$$O_2^{2 - }$$
View Solution
Discuss Question
Diamagnetic species have no unpaired electrons
$$\,O_2^{2 - }\, \Rightarrow \sigma 1{s^{ + 2}},{\sigma ^*}1{s^2},\sigma 2{s^{2,}}{\sigma ^*}2{s^2},\sigma 2p_x^2,$$ $$\left\{ {\pi 2p_y^2 = \pi 2p_z^2,\,\,\left\{ {{\pi ^*}2p_y^2 = {\pi ^*}2p_z^2} \right.} \right.$$
Whereas paramagnetic species has one or more unpaired electrons as in
$$\,{O_2} \to \,\sigma 1{s^2},{\sigma ^*}1{s^2},\sigma 2{s^2},{\sigma ^*}2{s^2},\sigma 2p_x^2,$$ $$\,\left\{ {\pi 2p_y^2 = \pi 2p_z^2,\,\left\{ {{\pi ^*}2p_y^1 = {\pi ^*}2p_z^1 - 2} \right.\,\,{\text{unpaired}}\,{\text{electrons}}} \right.$$
$$O_2^ + \to \sigma 1{s^2}\,,\,{\sigma ^*}1{s^2},\sigma 2{s^2},{\sigma ^*}2{s^2},\sigma 2p_x^2,$$ $$\,\left\{ {\pi 2p_y^2 = \pi 2p_z^2\,\,\left\{ {{\pi ^*}2p_y^1 = {\pi ^*}2p_z^0 - 1} \right.\,\,{\text{unpaired}}\,{\text{electrons}}} \right.$$
$$NO \to \sigma 1{s^2},{\sigma ^ * }1{s^2},\sigma 2{s^2},{\sigma ^ * }2{s^2},\sigma 2p_x^2,$$ $$\left\{ {\pi 2p_y^2 = \pi 2p_z^2,} \right.\left\{ {{\pi ^ * }2p_y^1 = {\pi ^ * }2p_z^0 - 1} \right.$$ $${\text{unpaired electron}}$$