171.
Which of the following statements illustrates the law of multiple proportions ?
A
An element forms two oxides, $$XO$$ and $$X{O_2}$$ containing $$50\% $$ and $$60\% $$ oxygen respectively. The ratio of masses of oxygen which combines with $$1\,g$$ of element is 2 : 3.
B
One volume of nitrogen always combines with three volumes of oxygen to form two volumes of ammonia.
C
$$3.47\,g$$ of $$BaC{l_2}$$ reacts with $$2.36\,g$$ of $$N{a_2}S{O_4}$$ to give $$3.88\,g$$ of $$BaS{O_4}$$ and $$1.95\,g$$ of $$NaCl.$$
D
$$20\,mL$$ of ammonia gives 10 volumes of $${N_2}$$ and 30 volumes of $${H_2}$$ at constant temperature and pressure.
Answer :
An element forms two oxides, $$XO$$ and $$X{O_2}$$ containing $$50\% $$ and $$60\% $$ oxygen respectively. The ratio of masses of oxygen which combines with $$1\,g$$ of element is 2 : 3.
In $$XO,50\,g$$ of element combines with $$50\,g$$ of oxygen.
∴ $$1\,g$$ of element combines with $$1\,g$$ of oxygen.
In $$X{O_2},40\,g$$ of element combines with $$60\,g$$ of oxygen.
∴ $$1\,g$$ of element combines with $$1.5\,g$$ of oxygen.
Thus, ratio of masses of oxygen which combines with $$1\,g$$ of element is 1 : 1.5 or 2 : 3. This is in accordance with the law of multiple proportions. In (B) Gay Lussac's law of gaseous volume is followed. In (C) law of conservation of mass is followed while in (D) Avogadro's law is followed.
172.
Few figures are expressed in scientific notation. Mark the incorrect one.
173.
The density of $$3M$$ solution of sodium chloride is $$1.252\,g\,m{L^{ - 1}}.$$ The molality of the solution will be : ( molar mass, $$NaCl = 585\,g\,mo{l^{ - 1}}$$ )
174.
$$0.24 g$$ of a volatile gas, upon vaporisation, gives $$45 mL$$ vapour at $$NTP.$$ What will be the vapour density of the substance?
$$\left( {{\text{Density of}}\,{H_2} = 0.089} \right)$$
$$\eqalign{
& {\text{Weight of gas}} = 0.24\,g \cr
& {\text{Volume of gas}}\left( V \right) = 45\,mL = 0.045\,L \cr
& {\text{Density of}}\,{H_2}\left( d \right) = 0.089 \cr
& {\text{Weight of }}45{\text{ }}mL{\text{ of }}{H_2} = V \times d \cr
& = 0.045 \times 0.089 \cr
& = 4.005 \times {10^{ - 3}}g \cr
& {\text{Therefore, vapour density}} \cr
& = \frac{{{\text{Weight of certain volume of substance}}}}{{{\text{Weight of same volume of hydrogen}}}} \cr
& = \frac{{0.24}}{{4.005 \times {{10}^{ - 3}}}} \cr
& = 59.93 \cr} $$
175.
Two elements $$'P'$$ and $$'Q'$$ combine to form a compound. Atomic mass of $$'P'$$ is 12 and $$'Q'$$ is 16. Percentage of $$'P'$$ in the compound is 27.3. What will be the empirical formula of the compound ?
$${\text{1}}\,Mole$$ of $$M{g_3}{\left( {P{O_4}} \right)_2}$$ contains $${\text{8}}\,\,mole$$ of oxygen atoms
$$\therefore \,\,8\,mole$$ of oxygen atoms $$ \equiv \,1\,mole$$ of $$M{g_3}{\left( {P{O_4}} \right)_{2\,}}mole$$ of $$M{g_3}{\left( {P{O_4}} \right)_2}$$
$$0.25\,mole$$ of oxygen atom $$ \equiv \frac{1}{8} \times 0.25\,mole$$ of $$M{g_3}{\left( {P{O_4}} \right)_2}$$
$$ = 3.125 \times {10^{ - 2}}\,mole$$ of $$M{g_3}{\left( {P{O_4}} \right)_2}$$
180.
In an experiment, $$2.4\,g$$ ofiron oxide on reduction with hydrogen gave $$1.68\,g$$ of iron. In another experiment, $$2.7\,g$$ of iron oxide gave $$1.89\,g$$ of iron on reduction. Which law is illustrated from the above data ?
In first experiment,
Mass of iron oxide $$ = 2.4\,g$$
Mass of iron $$ = 1.68\,g$$
Mass of oxygen $$ = 2.4 - 1.68 = 0.72$$
Ratio of masses 0f Iiron and oxygen $$ = \frac{{1.68}}{{0.72}} = 7:3$$
In second experiment,
Mass of iron oxide $$ = 2.7\,g$$
Mass of iron $$ = 1.89\,g$$
Mass of oxygen $$ = 2.7 - 1.89 = 0.81$$
Ratio of masses of iron and oxygen $$ = \frac{{1.89}}{{0.81}} = 7:3$$
The same ratio confirms that these experiments clarify Law of constant proportions.