102.
Arrange the following in the order of increasing mass ( atomic mass : $$O = 16,Cu = 63,N = 14$$ )
(i) one atom of oxygen
(ii) one atom of nitrogen
(iii) $$1 \times {10^{ - 10}}\,mole$$ of oxygen
(iv) $$1 \times {10^{ - 10}}\,mole$$ of copper
Mass of $$6.023 \times {10^{23}}$$ atoms of oxygen $$ = 16\,g$$
Mass of one atom of oxygen
$$\eqalign{
& = \frac{{16}}{{6.023 \times {{10}^{23}}}} \cr
& = 2.66 \times {10^{ - 23}}g \cr} $$
Mass of $${6.023 \times {{10}^{23}}}$$ atoms of nitrogen $$ = 14\,g$$
Mass of one atom of nitrogen
$$\eqalign{
& = \frac{{14}}{{6.023 \times {{10}^{23}}}} \cr
& = 2.32 \times {10^{ - 23}}g \cr} $$
Mass of $$1$$ $$mole$$ of oxygen $$ = 16\,g$$
Mass of $$1 \times {10^{ - 10}}\,mole$$ of oxygen $$ = 16 \times {10^{ - 10}}$$
Mass of $$1$$ $$mole$$ of copper $$ = 63\,g$$
Mass of $$1 \times {10^{ - 10}}\,mole$$ of copper $$ = 63 \times 1 \times {10^{ - 10}}$$
$$ = 63 \times {10^{ - 10}}$$
So, the order of increasing mass is (ii) < (i) < (iii) < (iv).
103.
Liquid benzene $$\left( {{C_6}{H_6}} \right)$$ burns in oxygen according to the equation, $$2{C_6}{H_6}\left( l \right) + 15{O_2}\left( g \right) \to 12C{O_2}\left( g \right) + 6{H_2}O\left( g \right)$$
How many litres of $${O_2}$$ at $$STP$$ are needed to complete the combustion of $$39 g$$ of liquid benzene? $$\left( {Mol.\,{\text{weight of}}\,{O_2} = 32,\,{C_6}{H_6} = 78} \right)$$
105.
A $$25.0\,mm \times 40.0\,mm$$ piece of gold foil is $$0.25\,mm$$ thick. The density of gold is $$19.32\,g/c{m^3}.$$ How many gold atoms are in the sheet? ( Atomic weight : $$Au = 197.0$$ )
106.
If the concentration of glucose $$\left( {{C_6}{H_{12}}{O_6}} \right)$$ in blood is $$0.9\,g\,{L^{ - 1}},$$ what will be the molarity of glucose in blood ?
Molar mass of sodium acetate $$\left( {C{H_3}COONa} \right) = 82\,g/mol$$
Mass of $${C{H_3}COONa}$$ required to make $$250\,mL$$ of $$0.575\,M$$ soIution $$ = \frac{{0.575 \times 82 \times 250}}{{1000}} = 11.79\,g$$
109.
In the standardization of  $$N{a_2}{S_2}{O_3}$$ using $${K_2}C{r_2}{O_7}$$ by iodometry, the equivalent weight of $${K_2}C{r_2}{O_7}$$ is
A
$$\frac{{\left( {{\text{molecular}}\,{\text{weight}}} \right)}}{2}$$
B
$$\frac{{\left( {{\text{molecular}}\,{\text{weight}}} \right)}}{6}$$
C
$$\frac{{\left( {{\text{molecular}}\,{\text{weight}}} \right)}}{3}$$
D
$${\text{same}}\,{\text{as}}\,{\text{molecular}}\,{\text{weight}}$$