61.
The internal energy change when a system goes from state $$A$$ to $$B$$ is $$40 kJ/mole.$$ If the system goes from $$A$$ to $$B$$ by a reversible path and returns to state $$A$$ by an irreversible path what would be the net change in internal energy ?
A
$$> 40 kJ$$
B
$$< 40 kJ$$
C
$$Zero$$
D
$$40 kJ$$
Answer :
$$Zero$$
View Solution
Discuss Question
For a cyclic process the net change in the internal energy is zero because the change in internal energy does not depend on the path.
62.
When the system does not exchange heat with the surroundings, the process is
A
isothermal
B
adiabatic
C
thermal
D
isochoric
Answer :
adiabatic
View Solution
Discuss Question
In adiabatic process, system does not exchange heat with surroundings
63.
The standard enthalpy of formation of $$N{H_3}$$ is $$ - 46.0\,kJ/mol.$$ If the enthalpy of formation of $${H_2}$$ from its atoms is $$ - 436\,kJ/mol$$ and that of $${N_2}$$ is $$ - 712\,kJ/mol,$$ the average bond enthalpy of $$N - H$$ bond in $$N{H_3}$$ is :
A
$$ - 1102\,kJ/mol$$
B
$$ - 964\,kJ/mol$$
C
$$ + 352\,kJ/mol$$
D
$$ + 1056\,kJ/mol$$
Answer :
$$ - 964\,kJ/mol$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Given}}\,\,\frac{1}{2}{N_2} + \frac{3}{2}{H_2} \rightleftharpoons N{H_3}; \cr
& \Delta {H_f} = - 46.0\,kJ/mol \cr
& H + H \rightleftharpoons {H_2};\Delta {H_f} = - 436\,kJ/mol \cr
& N + N \rightleftharpoons {N_2};\,\Delta {H_f} = - 712\,kJ/mol \cr
& \Delta {H_f}\left( {N{H_3}} \right) = \frac{1}{2}\Delta {H_{N - N}} + \frac{3}{2}\Delta {H_{H - H}} - \Delta {H_{N - F}} \cr
& - 46 = \frac{1}{2}\left( { - 712} \right) + \frac{3}{2}\left( { - 436} \right) - \Delta {H_{N - F}} \cr
& {\text{On calculation}} \cr
& \Delta {H_{N - F}} = - 964\,kJ/mol \cr} $$
64.
What is the amount of heat ( in Joules ) absorbed by $$18\,g$$ of water initially at room temperature heated to $${100^ \circ }C?$$ If $$10\,g$$ of $$Cu$$ is added to this water , than decrease in temperature ( in Kelvin ) of water was found to be? $$C\left( {p,m} \right)$$ for water $$75.32\,J/mol\,K;C\left( {p,m} \right)$$ for $$Cu = 24.47\,J/mol\,K.$$
A
5649, 369
B
5544, 324
C
5278, 342
D
3425, 425
Answer :
5649, 369
View Solution
Discuss Question
$$\eqalign{
& 18\,g\,\,{\text{of water at}}\,\,{100^ \circ }C? \cr
& 10\,g\,\,{\text{of }}Cu{\text{ at}}\,\,{\text{2}}{{\text{5}}^ \circ }C\,\,{\text{is added}}{\text{.}} \cr} $$
$$\eqalign{
& {q_p} = {C_{p,m}}\,dT \cr
& = 75.32 \times \frac{J}{{K\,mol}} \times \frac{{18g}}{{\frac{{18g}}{{mol}}}}\left( {373 - 298} \right)K \cr
& = 75.32\frac{J}{K} \times 75\,K \cr
& = 5.649 \times {10^3}J \cr
& {\text{If now 10}}g{\text{ of copper is added}} \cr
& {C_{p,m}} = \frac{{24.47\,J}}{{mol\,K}} \cr
& {\text{Amount of heat gained by }}Cu \cr
& = 24.47\frac{J}{{K\,mol}} \times \frac{{10g}}{{\frac{{63g}}{{mol}}}}\left( {373 - 298} \right)\,K \cr
& = 291.3\,J \cr
& {\text{Heat lost by water = 291}}{\text{.30 J}} = 291.30\,J \cr
& - 291.30\,J = 75.32\frac{J}{K} \times \left( {{T_2} - 373\,K} \right) \cr
& \Rightarrow - 3.947\,K = {T_2} - 373\,K \cr
& \Rightarrow {T_2} = 369.05\,K\, \cr} $$
65.
Which of the following statements/relationships is not correct in thermodynamic changes?
A
$$\Delta U = 0$$ ( isothermal reversible expansion of a gas )
B
$$w = - nRT\,\,{\text{ln}}\,\,\frac{{{V_2}}}{{{V_1}}}$$ ( isothermal reversible expansion of an ideal gas )
C
$$w = nRT\,\,{\text{ln}}\,\,\frac{{{V_2}}}{{{V_1}}}$$ ( isothermal reversible
expansion of an ideal gas )
D
For a system of constant volume heat involved directly changes to internal energy.
Answer :
$$w = nRT\,\,{\text{ln}}\,\,\frac{{{V_2}}}{{{V_1}}}$$ ( isothermal reversible
expansion of an ideal gas )
View Solution
Discuss Question
For isothermal reversible expansion.
$$w = - nRT\,\,{\text{ln}}\,\,\frac{{{V_2}}}{{{V_1}}}$$
66.
Which of the following is not correct ?
A
$$\Delta G$$ is zero for a reversible reaction.
B
$$\Delta G$$ is positive for a spontaneous reaction.
C
$$\Delta G$$ is negative for a spontaneous reaction.
D
$$\Delta G$$ is positive for a non-spontaneous reaction.
Answer :
$$\Delta G$$ is positive for a spontaneous reaction.
View Solution
Discuss Question
$$\Delta G$$ is negative for a spontaneous reaction. Positive sign shows non-spontaneous nature of the reaction.
67.
For a sample of perfect gas when its pressure is changed isothermally from $${p_i}$$ to $${p_f},$$ the entropy change is given by
A
$$\Delta S = nR\,\ln \left( {\frac{{{p_f}}}{{{p_i}}}} \right)$$
B
$$\Delta S = nR\,\ln \left( {\frac{{{p_i}}}{{{p_f}}}} \right)$$
C
$$\Delta S = nRT\,\ln \left( {\frac{{{p_f}}}{{{p_i}}}} \right)$$
D
$$\Delta S = RT\,\ln \left( {\frac{{{p_i}}}{{{p_f}}}} \right)$$
Answer :
$$\Delta S = nR\,\ln \left( {\frac{{{p_i}}}{{{p_f}}}} \right)$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Entropy change is given as,}} \cr
& \Delta S = n{C_p}\,\ln \frac{{{T_f}}}{{{T_i}}} + nR\,\ln \frac{{{p_i}}}{{{p_f}}}\,\,\,...{\text{(i)}} \cr
& {\text{For isothermal process, }}{T_i} = {T_f} \cr
& \therefore \,\,n{C_p}\,\ln \frac{{{T_f}}}{{{T_i}}} = n{C_p}\,\ln \frac{{{T_i}}}{{{T_i}}} = 0\,\,\left[ {\ln \,1 = 0} \right] \cr
& {\text{From Eq}}{\text{. (i)}}\,\,\Delta S = nR\,\ln \,\frac{{{p_i}}}{{{p_f}}} \cr} $$
68.
For reversible reaction :$${X_{\left( g \right)}} + 3{Y_{\left( g \right)}} \rightleftharpoons 2{Z_{\left( g \right)}};$$ $$\Delta H = - 40\,kJ\,mo{l^{ - 1}}$$
Standard entropies of $$X, Y$$ and $$Z$$ are $$60, 40$$ and $$50\,J\,{K^{ - 1}}\,mo{l^{ - 1}}$$ respectively. The temperature at which the above reaction is in equilibrium is
A
273$$\,K$$
B
600$$\,K$$
C
500$$\,K$$
D
400$$\,K$$
Answer :
500$$\,K$$
View Solution
Discuss Question
$$\eqalign{
& X + 3Y \rightleftharpoons 2Z \cr
& \Delta S = 2 \times 50 - \left( {60 + 3 \times 40} \right) \cr
& \,\,\,\,\,\,\,\,\,\, = - 80\,J{K^{ - 1}}\,mo{l^{ - 1}} \cr
& \Delta G = \Delta H - T\Delta S\,\,{\text{when}}\,\,\Delta G = 0 \cr
& T = \frac{{\Delta H}}{{\Delta S}} \cr
& \,\,\,\,\,\, = - 40 \times \frac{{1000}}{{ - 80}} \cr
& \,\,\,\,\,\, = 500\,K \cr} $$
69.
For the reaction taking place at certain temperature $$N{H_2}COON{H_4}\left( s \right) \rightleftharpoons $$ $$2N{H_3}\left( g \right) + C{O_2}\left( g \right),$$ if equilibrium pressure is $$3X$$ $$bar$$ then $${\Delta _r}{G^ \circ }$$ would be
A
$$ - RT\,\,{\text{ln}}\,\,9 - 3RT\,\,{\text{ln}}\,\,X$$
B
$$RT\,\,{\text{ln}}\,\,4 - 3RT\,\,{\text{ln}}\,\,X$$
C
$$ - 3RT\,\,{\text{ln}}\,\,X$$
D
$${\text{None of these}}$$
Answer :
$${\text{None of these}}$$
View Solution
Discuss Question
$$\eqalign{
& \Delta {{\text{G}}^ \circ } = - RT\,\,{\text{ln}}\,\,{K_p};{K_p} = {\left( {2x} \right)^2}X = 4{x^3} \cr
& \Delta {G^ \circ } = - RT\,\,{\text{ln}}\,\,\left( {4{X^3}} \right) \cr
& \Delta {G^ \circ } = - RT\,\,{\text{ln}}\,\,4 - 3RT\,\,{\text{ln}}\,\,X \cr} $$
70.
In thermodynamics, which one of the following properties is not an intensive property ?
A
Pressure
B
Temperature
C
Volume
D
Density
Answer :
Volume