161.
Change in enthalpy for reaction, $$2{H_2}{O_2}\left( l \right) \to 2{H_2}O\left( l \right) + {O_2}\left( g \right)$$ if heat of formation of $${H_2}{O_2}\left( l \right)$$ and $${H_2}O\left( l \right)$$ are $$-188$$ and $$ - 286\,kJ/mol$$ respectively is
162.
$$36\,mL$$ of pure water takes 100 sec to evaporate from a vessel and heater connected to an electric source which delivers $$806\,watt.$$ The $$\Delta {H_{vap}}$$ of $${H_2}O$$ is :
164.
For a given reaction, $$\Delta H = 35.5\,kJ\,mo{l^{ - 1}}$$ and $$\Delta S = 83.6\,J{K^{ - 1}}mo{l^{ - 1}}.$$ The reaction is spontaneous at : ( Assume that $$\Delta H$$ ans $$\Delta S$$ do not vary with temperature )
According to Gibbs-Helmholtz equation,
Gibbs energy $$\left( {\Delta G} \right) = \Delta H - T\Delta S$$
Where, $$\Delta H$$ = Enthalpy change
$$\Delta S$$ = Entropy change
$$T$$ = Temperature
For a reaction to be spontaneous
$$\Delta G < 0.$$
∴ Gibbs -Helmholtz equation becomes,
$$\eqalign{
& \Delta G = \Delta H - T\Delta S < 0 \cr
& {\text{or,}}\,\Delta H < T\Delta S \cr
& {\text{or}},\,\,T > \frac{{\Delta H}}{{\Delta S}} \cr
& = \frac{{35.5\,kJ\,mo{l^{ - 1}}}}{{83.6\,J{K^{ - 1}}mo{l^{ - 1}}}} \cr
& = \frac{{35.5 \times 1000}}{{83.6}} \cr
& = 425K \cr
& T > 425K \cr} $$
165.
Which of the following are not state functions?
$$\eqalign{
& \left( {\text{i}} \right)\,q + W \cr
& \left( {{\text{ii}}} \right)\,q \cr
& \left( {{\text{iii}}} \right)\,W \cr
& \left( {{\text{iv}}} \right)\,H - TS \cr} $$
The thermodynamic parameters which depend only upon the initial and final states of system, are called state functions, such as enthalpy $$\left( {H = q + W} \right),$$ Gibbs free energy $$\left( {G = H - TS} \right),$$ etc. While those parameters which depend on the path by which the process is performed rather than on the initial and final states, are called path functions, such as work done, heat, etc.
166.
For the auto-ionization of water at $${25^ \circ }C,$$ $${H_2}O\left( l \right) \rightleftharpoons {H^ + }\left( {aq} \right) + O{H^ - }\left( {aq} \right)$$ equilibrium constant is $${10^{ - 14}}.$$
What is $$\Delta {G^ \circ }$$ for the process?
167.
Given :
$$\eqalign{
& {\text{(i)}}\,{H_2}\left( g \right) + \frac{1}{2}{O_2}\left( g \right) \to {H_2}O\left( l \right); \cr
& \Delta {H^ \circ }_{298K} = - 285.9\,kJ\,mo{l^{ - 1}} \cr
& {\text{(ii)}}\,{H_2}\left( g \right) + \frac{1}{2}{O_2}\left( g \right) \to {H_2}O\left( g \right); \cr
& \Delta {H^ \circ }_{298K} = - 241.8\,kJ\,mo{l^{ - 1}} \cr} $$
The molar enthalpy of vapourisation of water will be :
$$\eqalign{
& {\text{Given}} \cr
& {H_2}\left( g \right) + \frac{1}{2}{O_2}\left( g \right) \to {H_2}O\left( l \right); \cr
& \Delta {H^ \circ } = - 285.9\,kJ\,mo{l^{ - 1}}\,\,\,...\left( 1 \right) \cr
& {H_2}\left( g \right) + \frac{1}{2}{O_2}\left( g \right) \to {H_2}O\left( g \right); \cr
& \Delta {H^ \circ } = - 241.8\,kJ\,mo{l^{ - 1}}\,...\left( 2 \right) \cr
& {\text{We have to calculate}} \cr
& {H_2}O\left( l \right) \to {H_2}O\left( g \right)\,;\,\,\Delta {H^ \circ } = ? \cr
& {\text{On substracting eqn}}{\text{. (2) from eqn}}{\text{. (1) we get}} \cr
& {{\text{H}}_2}O\left( l \right) \to {H_2}O\left( g \right)\,;\Delta {H^ \circ } = - 241.8 - \left( { - 285.9} \right) \cr
& = 44.1\,kJ\,mo{l^{ - 1}} \cr} $$
168.
Hydrogen has an ionisation energy of $$1311\,kJ\,mo{l^{ - 1}}$$ and for chlorine it is $$1256\,kJ\,mo{l^{ - 1}}.$$ Hydrogen forms $${H^ + }\left( {aq} \right)ions$$ but chlorine does not form $$C{l^ + }\left( {aq} \right)ions$$ because
A
$${H^ + }$$ has lower hydration enthalpy
B
$$C{l^ + }$$ has lower hydration enthalpy
C
$$Cl$$ has high electron affinity
D
$$Cl$$ has high electronegativity
Answer :
$$C{l^ + }$$ has lower hydration enthalpy
Hydration energy of $$C{l^ + }$$ is very less than $${H^ + },$$ hence it doesn’t form $$C{l^ + }\left( {aq} \right)ions.$$
169.
From the following bond energies
$$\eqalign{
& H - H\,{\text{bond energy}}:431.37\,kJ\,mo{l^{ - 1}} \cr
& C = C\,{\text{bond energy}}:606.10\,kJ\,mo{l^{ - 1}} \cr
& C - C\,{\text{bond energy}}:336.49\,kJ\,mo{l^{ - 1}} \cr
& C - H\,{\text{bond energy}}:410.50\,kJ\,mo{l^{ - 1}}\, \cr} $$
Enthalpy for the reaction,
will be
170.
At dynamic equilibrium the reaction on both sides occur at the same rate and the mass on both sides of the equilibrium does not undergo any change. This condition can be achieved only when the value of $$\Delta G$$ is