121. If half-life of a substance is $$5$$ $$yrs,$$  then the total amount of substance left after 15 years, when initial amount is $$64$$ $$grams$$  is

A 16$$\,g$$
B 2$$\,g$$
C 32$$\,g$$
D 8$$\,g$$
Answer :   8$$\,g$$
Discuss Question

122. A first order reaction has a rate constant $$1.15 \times {10^{ - 3}}\,{s^{ - 1}}.$$   How long will $$5\,g$$  of this reactant take to reduce to $$3\,g?$$

A 444 $$s$$
B 400 $$s$$
C 528 $$s$$
D 669 $$s$$
Answer :   444 $$s$$
Discuss Question

123. In a reaction, $$2X \to Y,$$   the concentration of $$X$$  decreases from $$3.0\,moles{\text{/litre}}$$    to $${\text{2}}{\text{.0}}\,moles{\text{/litre}}$$    in 5 minutes. The rate of reaction is

A \[0.1\,mol\,{{L}^{-1}}\,{{\min }^{-1}}\]
B \[5\,mol\,{{L}^{-1}}\,{{\min }^{-1}}\]
C \[1\,mol\,{{L}^{-1}}\,{{\min }^{-1}}\]
D \[0.5\,mol\,{{L}^{-1}}\,{{\min }^{-1}}\]
Answer :   \[0.1\,mol\,{{L}^{-1}}\,{{\min }^{-1}}\]
Discuss Question

124. reaction which is of first order $$w.r.t.$$  reactant $$A,$$ has a rate constant \[6\,{{\min }^{-1}}.\]  If we start with $$\left[ A \right] = 0.5\,mol\,{L^{ - 1}},$$    when would $$\left[ A \right]$$  reach the value of $$0.5\,mol\,{L^{ - 1}}$$

A $$0.384\,\min $$
B $$0.15\,\min $$
C $$3\,\min $$
D $$3.84\,\min $$
Answer :   $$0.384\,\min $$
Discuss Question

125. The rate constant of a first order reaction is $$15 \times {10^{ - 3}}\,{s^{ - 1}}.$$   How long will $$5.0\,g$$  of this reactant take to reduce to $$3.0\,g?$$

A 34.07$$\,s$$
B 7.57$$\,s$$
C 10.10$$\,s$$
D 15$$\,s$$
Answer :   34.07$$\,s$$
Discuss Question

126. Compounds $$'A'$$ and $$'B'$$ react according to the following chemical equation.
$${A_{\left( g \right)}} + 2{B_{\left( g \right)}} \to 2{C_{\left( g \right)}}$$
Concentration of either $$'A'$$ or $$'B'$$ were changed keeping the concentrations of one of the reactants constant and rates were measured as a function of initial concentration. Following results were obtained. Choose the correct option for the rate equations for this reaction.
Experiment Initial concentration of $$\left[ A \right]/mol\,{L^{ - 1}}$$ Initial concentration of $$\left[ B \right]/mol\,{L^{ - 1}}$$ Initial rate of formation of $$\left[ C \right]/mol\,{L^{ - 1}}\,{s^{ - 1}}$$
1. 0.30 0.30 0.10
2. 0.30 0.60 0.40
3. 0.60 0.30 0.20

A $${\text{Rate}} = k{\left[ A \right]^2}\left[ B \right]$$
B $${\text{Rate}} = k\left[ A \right]{\left[ B \right]^2}$$
C $${\text{Rate}} = k\left[ A \right]\left[ B \right]$$
D $${\text{Rate}} = k{\left[ A \right]^2}{\left[ B \right]^0}$$
Answer :   $${\text{Rate}} = k\left[ A \right]{\left[ B \right]^2}$$
Discuss Question

127. When a chemical reaction takes place, during the course of the reaction the rate of reaction

A keeps on increasing with time
B remains constant with time
C keeps on decreasing with time
D shows irregular trend with time
Answer :   keeps on decreasing with time
Discuss Question

128. For the reaction $${N_2} + 3{H_2} \to 2N{H_3},$$    how are the rate of reaction expressions inter-related $$\frac{{d\left[ {{H_2}} \right]}}{{dt}}$$  and $$\frac{{d\left[ {N{H_3}} \right]}}{{dt}}?$$

A $$ - \frac{1}{3}\frac{{d\left[ {{H_2}} \right]}}{{dt}} = + \frac{1}{2}\frac{{d\left[ {N{H_3}} \right]}}{{dt}}$$
B $$ - \frac{1}{2}\frac{{d\left[ {{H_2}} \right]}}{{dt}} = + \frac{1}{3}\frac{{d\left[ {N{H_3}} \right]}}{{dt}}$$
C $$ + \frac{1}{2}\frac{{d\left[ {{H_2}} \right]}}{{dt}} = - \frac{1}{3}\frac{{d\left[ {N{H_3}} \right]}}{{dt}}$$
D $$ + \frac{1}{3}\frac{{d\left[ {{H_2}} \right]}}{{dt}} = - \frac{1}{2}\frac{{d\left[ {N{H_3}} \right]}}{{dt}}$$
Answer :   $$ - \frac{1}{3}\frac{{d\left[ {{H_2}} \right]}}{{dt}} = + \frac{1}{2}\frac{{d\left[ {N{H_3}} \right]}}{{dt}}$$
Discuss Question

129. The rate constant, the activation energy and the Arrhenius parameter of a chemical reaction at $${25^ \circ }C$$  are $$3.0 \times {10^{ - 4}}{s^{ - 1}},$$   $$104.4\,kJ\,mo{l^{ - 1}}$$   and $$6.0 \times {10^{14}}{s^{ - 1}}$$   respectively. The value of the rate constant as $$T \to \infty $$   is,

A $$2.0 \times {10^{18}}{s^{ - 1}}$$
B $$6.0 \times {10^{14}}{s^{ - 1}}$$
C $${\text{infinity}}$$
D $$3.6 \times {10^{30}}{s^{ - 1}}$$
Answer :   $$6.0 \times {10^{14}}{s^{ - 1}}$$
Discuss Question

130. Which of the following nuclear reactions will generate an isotope?

A $$\beta $$ - particle emission
B Neutron praticle emission
C Positron emission
D $$\alpha $$ - particle emission.
Answer :   Neutron praticle emission
Discuss Question


Practice More MCQ Question on Chemistry Section