Question

Which of these statements about $${\left[ {Co{{\left( {CN} \right)}_6}} \right]^{3 - }}$$   is true ?

A. $${\left[ {Co{{\left( {CN} \right)}_6}} \right]^{3 - }}$$   has no unpaired electrons and will be in a low-spin configuration.  
B. $${\left[ {Co{{\left( {CN} \right)}_6}} \right]^{3 - }}$$   has four unpaired electrons and will be in a low-spin configuration.
C. $${\left[ {Co{{\left( {CN} \right)}_6}} \right]^{3 - }}$$   has four unpaired electrons and will be in a high-spin configuration.
D. $${\left[ {Co{{\left( {CN} \right)}_6}} \right]^{3 - }}$$   has no unpaired electrons and will be in a high-spin configuration.
Answer :   $${\left[ {Co{{\left( {CN} \right)}_6}} \right]^{3 - }}$$   has no unpaired electrons and will be in a low-spin configuration.
Solution :
$$\eqalign{ & {\left[ {Co{{\left( {CN} \right)}_6}} \right]^{3 - }} \cr & C{o^{3 + }} = 1{s^2}\,2{s^2}\,2{p^6}\,3{s^2}\,3{p^6}\,3{d^6} \cr} $$
$$C{N^ - }$$  is a strong field ligand and as it approaches the metal ion, the electrons must pair up.
The splitting of the $$d$$ - orbitals into two sets of orbitals in an octahedral $${\left[ {Co{{\left( {CN} \right)}_6}} \right]^{3 - }}$$   may be represented as
Co-ordination Compounds mcq solution image
Here, for $${d^6}\,ions,$$   three electrons first enter orbitals with parallel spin put the remaining may pair up in $${t_{2g}}$$  orbital giving rise to low spin complex ( strong ligand ) field.
$$\therefore \,\,{\left[ {Co{{\left( {CN} \right)}_6}} \right]^{3 - }}$$    has no unpaired electron and will be in a low spin configuration.

Releted MCQ Question on
Inorganic Chemistry >> Co - ordination Compounds

Releted Question 1

Amongst $$Ni{\left( {CO} \right)_4},{\left[ {Ni{{\left( {CN} \right)}_4}} \right]^{2 - }}{\text{and}}\,NiCl_4^{2 - }$$

A. $$Ni{\left( {CO} \right)_4}\,{\text{and}}\,NiCl_4^{2 - }$$     are diamagnetic and $${\left[ {Ni{{\left( {CN} \right)}_4}} \right]^{2 - }}$$   is paramagnetic
B. $$NiCl_4^{2 - }\,{\text{and}}\,{\left[ {Ni{{\left( {CN} \right)}_4}} \right]^{2 - }}$$     are diamagnetic and $$Ni{\left( {CO} \right)_4}$$   is paramagnetic
C. $$Ni{\left( {CO} \right)_4}\,{\text{and}}\,{\left[ {Ni{{\left( {CN} \right)}_4}} \right]^{2 - }}$$     are diamagnetic and $$NiCl_4^{2 - }$$  is paramagnetic
D. $$Ni{\left( {CO} \right)_4}$$  is diamagnetic and $$NiCl_4^{2 - }\,{\text{and}}\,{\left[ {Ni{{\left( {CN} \right)}_4}} \right]^{2 - }}$$     are paramagnetic
Releted Question 2

The geometry of $$Ni{\left( {CO} \right)_4}\,{\text{and}}\,Ni{\left( {PP{h_3}} \right)_2}C{l_2}\,{\text{are}}$$

A. both square planar
B. tetrahedral and square planar, respectively
C. both tetrahedral
D. square planar and tetrahedral, respectively
Releted Question 3

The complex ion which has no $$'d'$$ electron in the central metal atom is

A. $${\left[ {Mn{O_4}} \right]^ - }$$
B. $${\left[ {Co{{\left( {N{H_3}} \right)}_6}} \right]^{3 + }}$$
C. $${\left[ {Fe{{\left( {CN} \right)}_6}} \right]^{3 - }}$$
D. $${\left[ {Cr{{\left( {{H_2}O} \right)}_6}} \right]^{3 + }}$$
Releted Question 4

In the process of extraction of gold,
Roasted gold ore $$ + C{N^ - } + {H_2}O\mathop \to \limits^{{O_2}} \left[ X \right] + O{H^ - }$$
$$\left[ X \right] + Zn \to \left[ Y \right] + Au$$
Identify the complexes $$\left[ X \right]\,\,{\text{and}}\,\,\left[ Y \right]$$

A. $$X = {\left[ {Au{{\left( {CN} \right)}_2}} \right]^ - },Y = {\left[ {Zn{{\left( {CN} \right)}_4}} \right]^{2 - }}$$
B. $$X = {\left[ {Au{{\left( {CN} \right)}_4}} \right]^{3 - }},Y = {\left[ {Zn{{\left( {CN} \right)}_4}} \right]^{2 - }}$$
C. $$X = {\left[ {Au{{\left( {CN} \right)}_2}} \right]^ - },Y = {\left[ {Zn{{\left( {CN} \right)}_6}} \right]^{4 - }}$$
D. $$X = {\left[ {Au{{\left( {CN} \right)}_4}} \right]^ - },Y = {\left[ {Zn{{\left( {CN} \right)}_4}} \right]^{2 - }}$$

Practice More Releted MCQ Question on
Co - ordination Compounds


Practice More MCQ Question on Chemistry Section