Question
The volume strength of $$1.5\,N\,{H_2}{O_2}$$ solution is
A.
4.8
B.
5.2
C.
8.4
D.
8.8
Answer :
8.4
Solution :
$$\eqalign{
& {\text{Normality}} = 1.5\,N \cr
& {\text{Equivalent weight of}}\,{H_2}{O_2} = 17 \cr
& {\text{So, strength of the solutions,}} \cr
& S = E \times N \cr
& \,\,\,\,\, = 17 \times 1.5 = 25.5 \cr
& \,\,\,\,\,\,\,\,\,\,2{H_2}{O_2} \to 2{H_2}O + {O_2} \cr
& \,\,\,\,\, = 2 \times 34 \cr
& \,\,\,\,\, = 68\,g \cr} $$
$$\because \,\,68\,g$$ of $${H_2}{O_2}$$ produce $${O_2}$$ at $$NTP = 22.4\,L$$
$$\therefore 25.5\,g$$ of $${H_2}{O_2}$$ will produce
$$\eqalign{
& = \frac{{22.4}}{{68}} \times 25.5 \cr
& = 8.4\,L\,\,{\text{of}}\,{O_2} \cr} $$