Question
The value of Planck’s constant is $$6.63 \times {10^{ - 34}}Js.$$ The speed of light is $$3 \times {10^{17}}nm\,{s^{ - 1}}.$$ Which value is closest to the wavelength in nanometer of a quantum of light with frequency $$6 \times {10^{15}}{s^{ - 1}}?$$
A.
10
B.
25
C.
50
D.
75
Answer :
50
Solution :
$$\eqalign{
& {\text{Given, Planck's constant,}} \cr
& h = 6.63 \times {10^{ - 34}}Js \cr
& {\text{Speed of light,}}\,\,c = 3 \times {10^{17}}nm\,{s^{ - 1}} \cr
& {\text{Frequency of quantam light}} \cr
& \nu = 6 \times {10^{15}}{s^{ - 1}} \cr
& {\text{Wavelength,}}\,\,\,\lambda = ? \cr
& {\text{We know that,}}\,\,\,\nu = \frac{c}{\lambda } \cr
& {\text{or,}}\,\,\lambda = \frac{c}{\nu } \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{3 \times {{10}^{17}}}}{{6 \times {{10}^{15}}}} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\, = 0.5 \times {10^2}\,nm \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\, = 50\,nm \cr} $$