Question
The total vapour pressure of a $$4\,mole\,\% $$ solution of $$N{H_3}$$ in water at $$293\,K$$ is $$50.0\,torr.$$ The vapor pressure of pure water is $$17.0\,torr$$ at this temperature. Applying Henry’s and Raoult’s laws, the total vapour pressure for a $$5\,mole\,\% $$ solution is
A.
$$58.25\,torr$$
B.
$$33\,torr$$
C.
$$42.1\,torr$$
D.
$$52.25\,torr$$
Answer :
$$58.25\,torr$$
Solution :
$$\eqalign{
& {\text{The given data are}} \cr
& {P_{water}} = 17.0\,torr; \cr
& {P_{total}}\left( {4\,mole\,\% \,{\text{solution}}} \right) \cr
& = {P_{N{H_3}}} + {P_{water}} = 50.0\,torr \cr
& {X_{N{H_3}}} = 0.04\,\,{\text{and}}\,\,{X_{water}} = 0.96 \cr
& {\text{Now according to Raoult's}}\,{\text{law;}} \cr
& {P_{water}} = {X_{water}}\,P_{water}^ \circ \cr
& = 0.96 \times 17.0\,torr = 16.32\,torr \cr
& {\text{Now Henry's}}\,{\text{law constant for ammonia is}} \cr
& {K_H}\left( {N{H_3}} \right) = \frac{{{P_{N{H_3}}}}}{{{X_{N{H_3}}}}} = \frac{{33.68\,torr}}{{0.04}} = 842\,torr \cr
& {\text{Hence, for}}\,\,5\,mole\,\% \,\,{\text{solution, we have}} \cr
& {P_{N{H_3}}} = {K_H}\left( {N{H_3}} \right){X_{N{H_3}}} \cr
& = \left( {842\,torr} \right)\left( {0.05} \right) = 16.15\,torr \cr
& {\text{Thus,}}\,{P_{total}}\left( {5\,mole\,\% \,{\text{solution}}} \right) \cr
& = {P_{N{H_3}}} + {P_{water}} \cr
& = 42.1 + 16.15 \cr
& = 58.25\,torr \cr} $$