Question
The ionisation constant of ammonium hydroxide is $$1.77 \times {10^{ - 5}}$$ at $$298\,K.$$ Hydrolysis constant of ammonium chloride is
A.
$$5.65 \times {10^{ - 10}}$$
B.
$$6.50 \times {10^{ - 12}}$$
C.
$$5.65 \times {10^{ - 13}}$$
D.
$$5.65 \times {10^{ - 12}}$$
Answer :
$$5.65 \times {10^{ - 10}}$$
Solution :
$$\eqalign{
& {\text{Given,}}\,{K_a}\left( {N{H_4}OH} \right) = 1.77 \times {10^{ - 5}} \cr
& N{H_4}OH \rightleftharpoons NH_4^ + + O{H^ - } \cr
& {K_a} = \frac{{\left[ {NH_4^ + } \right]\left[ {O{H^ - }} \right]}}{{\left[ {N{H_4}OH} \right]}} \cr
& \,\,\,\,\,\,\,\, = 1.77 \times {10^{ - 5}}\,\,\,\,...{\text{(i)}} \cr
& {\text{Hydrolysis of}}\,N{H_4}Cl\,{\text{takes place as,}} \cr
& N{H_4}Cl + {H_2}O \to N{H_4}OH + HCl \cr
& {\text{or}}\,\,NH_4^ + + {H_2}O \to N{H_4}OH + {H^ + } \cr
& {\text{Hydrolysis constant,}} \cr
& \,\,\,\,\,\,{K_h} = \frac{{\left[ {N{H_4}OH} \right]\left[ {{H^ + }} \right]}}{{\left[ {NH_4^ + } \right]}}...{\text{(ii)}} \cr
& {\text{or}}\,{{\text{K}}_h} = \frac{{\left[ {N{H_4}OH} \right]\left[ {{H^ + }} \right]\left[ {O{H^ - }} \right]}}{{\left[ {NH_4^ + } \right]\left[ {O{H^ - }} \right]}}...{\text{(iii)}} \cr
& {\text{From Eqs}}{\text{. (i), (ii) and (iii)}} \cr
& {{\text{K}}_h} = \frac{{{K_w}}}{{{K_a}}}\,\,\,\left[ {\because \,\,\left[ {{H^ + }} \right]\left[ {O{H^ - }} \right] = {K_w}} \right] \cr
& \,\,\,\,\,\,\,\, = \frac{{{{10}^{ - 14}}}}{{1.77 \times {{10}^{ - 5}}}} \cr
& \,\,\,\,\,\,\,\, = 5.65 \times {10^{ - 10}} \cr} $$