Question
The half-life of a radioactive isotope is $$3 h.$$ If the initial mass of the isotope was $$300$$ $$g,$$ the mass which remained undecayed after $$18$$ $$h$$ would be
A.
4.68$$\,g$$
B.
2.34$$\,g$$
C.
1.17$$\,g$$
D.
9.36$$\,g$$
Answer :
4.68$$\,g$$
Solution :
$$\eqalign{
& {\text{Given,}} \cr
& {\text{Half - life}}\left( {{t_{\frac{1}{2}}}} \right) = 3\,h \cr
& {\text{Initial mass}}\left( {{N_0}} \right) = 300\,g \cr
& {\text{Total time}}\,\left( T \right) = 18\,h \cr
& {\text{Mass left}}\,\left( N \right) = ? \cr
& {\text{We know that,}} \cr
& \frac{N}{{{N_0}}} = {\left( {\frac{1}{2}} \right)^n} \cr
& {\text{where, }}n = {\text{number of half - lives}} \cr
& n = \frac{{{\text{Total}}\,{\text{time}}}}{{{\text{Half - life}}}} \cr
& \,\,\,\,\, = \frac{{18}}{3} \cr
& \,\,\,\,\, = 6 \cr
& {\text{So,}}\,\,\frac{N}{{300}} = {\left( {\frac{1}{2}} \right)^6} \cr
& {\text{or}}\,\,\,\frac{N}{{300}} = \frac{1}{{64}} \cr
& N = \frac{{300}}{{64}} \cr
& \,\,\,\,\,\,\, = 4.68\,g \cr} $$