Question
The following results were obtained during kinetic studies of the reaction ;
| $$2A + B\,\,\,\,{\text{Products}}$$ |
| Experiment |
$$\left[ A \right]\left( {{\text{in}}\,mol\,{L^{ - 1}}} \right)$$ |
$$\left[ B \right]\left( {{\text{in}}\,mol\,{L^{ - 1}}} \right)$$ |
Initial Rate of reaction $$\left( {{\text{in}}\,mol\,{L^{ - 1}}\,{{\min }^{ - 1}}} \right)$$ |
| I |
0.10 |
0.20 |
$$6.93 \times {10^{ - 3}}$$ |
| II |
0.10 |
0.25 |
$$6.93 \times {10^{ - 3}}$$ |
| III |
0.20 |
0.30 |
$$1.386 \times {10^{ - 2}}$$ |
The time (in minutes) required to consume half of $$A$$ is :
A.
5
B.
10
C.
1
D.
100
Answer :
5
Solution :
From experiment I and II, it is observed that order of reaction $$w.r.t.$$ $$(c)$$ is zero.
From experiment II and III, $$\alpha $$ can be calculated as :
$$\eqalign{
& \frac{{1.386 \times {{10}^{ - 2}}}}{{6.93 \times {{10}^{ - 3}}}} = {\left( {\frac{{0.2}}{{0.1}}} \right)^\alpha }\,\,\therefore \,\,\alpha = 1 \cr
& {\text{Now,}}\,\,{\text{Rate}} = \,K{\left[ A \right]^1} \cr
& {\text{or}},\,\,6.93 \times {10^{ - 3}} = K\left( {0.1} \right) \cr
& K = 6.93 \times {10^{ - 2}} \cr
& {\text{For the reaction,}}\,{\text{2A + B}} \to {\text{Products}} \cr
& {\text{2}}Kt = \ln \frac{{{{\left[ A \right]}_0}}}{{\left[ A \right]}} \cr
& \therefore \,\,{t_{\frac{1}{2}}} = \frac{{0.693}}{{2K}} = \frac{{0.693}}{{0.693 \times {{10}^{ - 2}} \times 2}} \cr
& {t_{\frac{1}{2}}} = 5 \cr} $$