Question
The following equilibrium is established when hydrogen chloride is dissolved in acetic acid.

The set that characterises the conjugate acidbase pairs is
A.
$$\left( {HCl,C{H_3}COOH} \right){\text{and}}\left( {C{H_3}COOH_2^ + ,C{l^ - }} \right)$$
B.
$$\left( {HCl,C{H_3}COOH_2^ + } \right){\text{and}}\left( {C{H_3}COOH,C{l^ - }} \right)$$
C.
$$\left( {C{H_3}COOH_2^ + ,HCl} \right){\text{and}}\left( {C{l^ - },C{H_3}COOH} \right)$$
D.
$$\left( {HCl,C{l^ - }} \right){\text{and}}\left( {C{H_3}COOH_2^ + ,C{H_3}COOH} \right)$$
Answer :
$$\left( {HCl,C{l^ - }} \right){\text{and}}\left( {C{H_3}COOH_2^ + ,C{H_3}COOH} \right)$$
Solution :
$$HCl$$ is stronger acid than $$C{H_3}COOH$$ and $$C{l^ - }$$ is a stronger base than $$C{H_3}COOH_2^ + $$ and is the conjugate base of $$HCl.$$
$$\mathop {HCl}\limits_{{\text{aci}}{{\text{d}}_{\text{1}}}} + \mathop {C{H_3}COOH}\limits_{{\text{bas}}{{\text{e}}_{\text{2}}}} \rightleftharpoons \mathop {C{l^ - }}\limits_{{\text{bas}}{{\text{e}}_1}} + \mathop {C{H_3}COOH_2^ + }\limits_{{\text{aci}}{{\text{d}}_2}} $$