Question
The following data were obtained during the first order thermal decomposition of $$S{O_2}C{l_2}$$ at a constant volume.
$$S{O_2}C{l_{2\left( g \right)}} \to S{O_{2\left( g \right)}} + C{l_{2\left( g \right)}}$$
| Experiment |
Time/s-1 |
Total pressure/atm |
| 1 |
0 |
0.5 |
| 2 |
100 |
0.6 |
What is the rate of reaction when total pressure is $$0.65\,atm?$$
A.
$$0.35\,atm\,{s^{ - 1}}$$
B.
$$2.235 \times {10^{ - 3}}\,atm\,{s^{ - 1}}$$
C.
$$7.8 \times {10^{ - 4}}\,atm\,{s^{ - 1}}$$
D.
$$1.55 \times {10^{ - 4}}\,atm\,{s^{ - 1}}$$
Answer :
$$7.8 \times {10^{ - 4}}\,atm\,{s^{ - 1}}$$
Solution :
\[\underset{\begin{smallmatrix}
\text{Initial pressure} \\
\\
\text{Pressure at time }t
\end{smallmatrix}}{\mathop{{}}}\,\underset{\begin{smallmatrix}
{{p}_{0}} \\
{{p}_{0}}-p
\end{smallmatrix}}{\mathop{S{{O}_{2}}C{{l}_{2}}}}\,\to \underset{\begin{smallmatrix}
0 \\
\\
p
\end{smallmatrix}}{\mathop{S{{O}_{2}}}}\,+\underset{\begin{smallmatrix}
0 \\
\\
p
\end{smallmatrix}}{\mathop{C{{l}_{2}}}}\,\]
Let initial pressure, $${p_0} \propto {R_0}$$
Total Pressure at time $$t,{P_t} = {p_0} - p + p + p = {p_0} + p$$
Pressure of reactants at time $$t,{p_0} - p = 2{p_0} - {P_t} \propto R$$
$$\eqalign{
& k = \frac{{2.303}}{t}\log \frac{{{p_0}}}{{2{p_0} - {P_t}}} \cr
& \,\,\,\, = \frac{{2.303}}{{100}}\log \frac{{0.5}}{{2 \times 0.5 - 0.6}} \cr
& \,\,\,\, = \frac{{2.303}}{{100}}\log 1.25 \cr
& \,\,\,\, = 2.2318 \times {10^{ - 3}}{s^{ - 1}} \cr} $$
$${\text{Pressure of}}\,\,S{O_2}C{l_2}\,\,{\text{at}}\,\,{\text{time}}$$ $$t\left( {{p_{S{O_2}C{l_2}}}} \right)$$
$$\eqalign{
& = 2{p_0} - {P_t} \cr
& = 2 \times 0.50 - 0.65\,atm \cr
& = 0.35\,atm \cr
& {\text{Rate at that time}} \cr
& = k \times {p_{S{O_2}C{l_2}}} \cr
& = \left( {2.2318 \times {{10}^{ - 3}}} \right) \times \left( {0.35} \right) \cr
& = 7.8 \times {10^{ - 4}}\,atm\,{s^{ - 1}} \cr} $$