Question
The experimental data for the reaction $$2A + {B_2} \to 2\,AB$$ is
| Exp. |
$$\left[ A \right]$$ |
$$\left[ {{B_2}} \right]$$ |
Rate $$\left( {M\,{s^{ - 1}}} \right)$$ |
| 1. |
0.50 |
0.50 |
$$1.6 \times {10^{ - 4}}$$ |
| 2. |
0.50 |
1.00 |
$$3.2 \times {10^{ - 4}}$$ |
| 3. |
1.00 |
1.00 |
$$3.2 \times {10^{ - 4}}$$ |
The rate equation for the above data is
A.
$${\text{rate}} = k\left[ {{B_2}} \right]$$
B.
$${\text{rate}} = k{\left[ {{B_2}} \right]^2}$$
C.
$${\text{rate}} = k{\left[ A \right]^2}{\left[ B \right]^2}$$
D.
$${\text{rate = k}}{\left[ A \right]^2}\left[ B \right]$$
Answer :
$${\text{rate}} = k\left[ {{B_2}} \right]$$
Solution :
Consider the following rate law equation,
$$\eqalign{
& \frac{{dx}}{{dt}} = k{\left[ A \right]^m}{\left[ {{B_2}} \right]^n} \cr
& 1.6 \times {10^{ - 4}} = k{\left[ {0.50} \right]^m}{\left[ {0.50} \right]^n}\,\,\,...{\text{(i)}} \cr
& 3.2 \times {10^{ - 4}} = k{\left[ {0.50} \right]^m}{\left[ {1.0} \right]^n}\,\,\,...{\text{(ii)}} \cr
& 3.2 \times {10^{ - 4}} = k{\left[ {1.00} \right]^m}{\left[ {1.0} \right]^n}\,\,\,...{\text{(iii)}} \cr
& {\text{By dividing Eq}}{\text{. (iii) by (ii) we get,}} \cr
& \frac{{3.2 \times {{10}^{ - 4}}}}{{3.2 \times {{10}^{ - 4}}}} = \frac{{k{{\left[ {1.00} \right]}^m}{{\left[ {1.0} \right]}^n}}}{{k{{\left[ {0.50} \right]}^m}{{\left[ {1.0} \right]}^n}}} \cr
& 1 = {2^m}\,\,\,\,\,{\text{or}}\,\,\,\,{{\text{2}}^0} = {2^m} \cr
& \therefore \,\,\,m = 0 \cr
& {\text{By dividing Eq}}{\text{. (ii) by (i)}} \cr
& \frac{{3.2 \times {{10}^{ - 4}}}}{{1.6 \times {{10}^{ - 4}}}} = \frac{{{{\left[ {0.50} \right]}^m}{{\left[ {1.0} \right]}^n}}}{{{{\left[ {0.50} \right]}^m}{{\left[ {0.50} \right]}^n}}} \cr
& 2 = {2^n} \cr
& {\text{or}}\,\,\,{{\text{2}}^1} = {2^n} \cr
& \therefore \,\,\,n = 1 \cr
& {\text{Hence rate,}} \cr
& \left( {\frac{{dx}}{{dt}}} \right) = k{\left[ A \right]^0}{\left[ {{B_2}} \right]^1} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = k\left[ {{B_2}} \right] \cr} $$