Question
Mechanism of a hypothetical reaction $${X_2} + {Y_2} \to 2XY$$ is given below
$$\eqalign{
& \left( {\text{i}} \right){X_2} \rightleftharpoons X + X\left( {{\text{fast}}} \right) \cr
& \left( {{\text{ii}}} \right)X + {Y_2} \to XY + Y\left( {{\text{slow}}} \right) \cr
& \left( {{\text{iii}}} \right)X + Y \to XY\,\left( {{\text{fast}}} \right) \cr} $$
The overall order of the reaction will be
A.
1
B.
2
C.
0
D.
1.5
Answer :
1.5
Solution :
We know that, slowest step is the rate determining step.
$$\eqalign{
& \therefore \,\,{\text{Rater}}\left( r \right) = {K_1}\left[ X \right]\left[ {{Y_2}} \right]\,\,\,...\left( {\text{i}} \right) \cr
& {\text{Now, from equation}}{\text{. (i), i}}{\text{.e}}{\text{.}} \cr
& {X_2} \to 2X\left[ {{\text{fast}}} \right] \cr
& {K_{eq}} = \frac{{{{\left[ X \right]}^2}}}{{\left[ {{X_2}} \right]}} \cr
& \left[ X \right] = {\left\{ {{K_{eq}}\left[ {{X_2}} \right]} \right\}^{\frac{1}{2}}}\,\,\,...\left( {{\text{ii}}} \right) \cr} $$
Now, substitute the value of $$\left[ X \right]$$ from equation. (ii) in equation. (i), we get
$$\eqalign{
& {\text{Rate}}\left( r \right) = {K_1}{\left( {{K_{eq}}} \right)^{\frac{1}{2}}}{\left[ {{X_2}} \right]^{\frac{1}{2}}}\left[ {{Y_2}} \right] \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = K{\left[ {{X_2}} \right]^{\frac{1}{2}}}\left[ {{Y_2}} \right] \cr
& \therefore \,\,{\text{Order of reaction}} \cr
& = \frac{1}{2} + 1 \cr
& = \frac{3}{2} \cr
& = 1.5 \cr} $$