Question

Match the column I with column II and mark the appropriate choice.
Column I (Structure) Column II (Packing efficiency)
a. Simple cubic structure 1. 68%
b. Face centred cubic structure 2. 74%
c. Body centred cubic structure 3. 52%

A. a - 3, b - 2, c - 1  
B. a - 1, b - 2, c - 3
C. a - 2, b - 1, c - 3
D. a - 3, b - 1, c - 2
Answer :   a - 3, b - 2, c - 1
Solution :
$$\eqalign{ & {\text{For}}\,\,{\text{simple}}\,\,{\text{cubic}}\,\,{\text{structure,}} \cr & V = {a^3}\left( {{\text{volume}}\,\,{\text{of}}\,\,{\text{the}}\,\,{\text{unit}}\,\,{\text{cell}}} \right) \cr & V' = \frac{4}{3}\pi {r^3}\left( {{\text{volume}}\,\,{\text{of}}\,\,{\text{one}}\,\,{\text{atom}}} \right) \cr & = \frac{4}{3}\pi {\left( {\frac{a}{2}} \right)^3} \cr & = \frac{{\pi {a^3}}}{6} \cr & {\text{Packing}}\,\,{\text{efficiency}} \cr & = \frac{{V'}}{V} \cr & = \frac{{\frac{{\pi {a^3}}}{6}}}{{{a^3}}} \cr & = \frac{\pi }{6} \cr & = 0.52\,\,{\text{or}}\,\,52\% \cr & {\text{For}}\,\,fcc\,\,{\text{structure,}} \cr & V' = 4 \times \frac{4}{3}\pi {r^3}\left( {{\text{4}}\,\,{\text{atoms}}\,\,{\text{per}}\,\,{\text{unit}}\,\,{\text{cell}}} \right) \cr & r = \frac{a}{{2\sqrt 2 }} \cr & V' = \frac{{16}}{3}\pi {\left( {\frac{a}{{2\sqrt 2 }}} \right)^3} \cr & \,\,\,\,\,\,\,\,\, = \frac{\pi }{{3\sqrt 2 }}{a^3} \cr & {\text{Volume}}\,\,{\text{of}}\,\,{\text{unit}}\,\,{\text{cell}} = V = {a^3} \cr & {\text{Packing}}\,\,{\text{efficiency}} \cr & = \frac{{V'}}{V} \cr & = \frac{{\pi {a^3}}}{{3\sqrt 2 {a^3}}} \cr & = \frac{\pi }{{3\sqrt 2 }} \cr & = 0.74\,\,{\text{or}}\,\,{\text{74% }} \cr & {\text{For}}\,\,bcc\,\,{\text{structure,}} \cr & V' = 2 \times \frac{4}{3}\pi {r^3}\left( {{\text{2}}\,\,{\text{atoms}}\,\,{\text{per}}\,\,{\text{unit}}\,\,{\text{cell}}} \right) \cr & r = \frac{{\sqrt 3 }}{4}a \cr & V' = 2 \times \frac{4}{3}\pi {\left( {\frac{{\sqrt 3 }}{4}a} \right)^3} \cr & \,\,\,\,\,\,\,\, = \frac{{\sqrt 3 \pi {a^3}}}{8} \cr & V = {a^3} \cr & {\text{Packing}}\,\,{\text{efficiency}} \cr & = \frac{{V'}}{V} \cr & = \frac{{\sqrt 3 \pi {a^3}}}{{8{a^3}}} \cr & = \frac{{\sqrt 3 }}{8}\pi \cr & = 0.68\,\,{\text{or}}\,\,{\text{68% }} \cr} $$

Releted MCQ Question on
Physical Chemistry >> Solid State

Releted Question 1

$$CsBr$$  has $$bcc$$  structure with edge length 4.3. The shortest inter ionic distance in between $$C{s^ + }$$ and $$B{r^ - }$$  is :

A. 3.72
B. 1.86
C. 7.44
D. 4.3
Releted Question 2

The coordination number of a metal crystallizing in a hexagonal close-packed structure is

A. 12
B. 4
C. 8
D. 6
Releted Question 3

In a solid $$‘AB’$$ having the $$NaCl$$  structure, $$'A’$$ atoms occupy the corners of the cubic unit cell. If all the face-centered atoms along one of the axes are removed, then the resultant stoichiometry of the solid is

A. $$A{B_2}$$
B. $${A_2}B$$
C. $${A_4}{B_3}$$
D. $${A_3}{B_4}$$
Releted Question 4

A substance $${A_x}{B_y}$$  crystallizes in a face centred cubic $$(FCC)$$  lattice in which atoms $$'A'$$ occupy each corner of the cube and atoms $$'B'$$ occupy the centres of each face of the cube. Identify the correct composition of the substance $${A_x}{B_y}$$

A. $$A{B_3}$$
B. $${A_4}{B_3}$$
C. $${A_3}B$$
D. Compostion cannot be specified

Practice More Releted MCQ Question on
Solid State


Practice More MCQ Question on Chemistry Section