Question

In aqueous solution the ionization constants for carbonic acid are $${K_1} = 4.2 \times {10^{ - 7}}$$   and $${K_2} = 4.8 \times {10^{ - 11}}.$$    Select the correct statement for a saturated 0.034 M solution of the carbonic acid.

A. The concentration of $$CO_3^{2 - }$$  is $$0.034\,M.$$
B. The concentration of $$CO_3^{2 - }$$  is greater than that of $$HCO_3^ - .$$
C. The concentrations of $${H^ + }$$ and $$HCO_3^ - $$  are approximately equal.  
D. The concentration of $${H^ + }$$ is double that of $$CO_3^{2 - }.$$
Answer :   The concentrations of $${H^ + }$$ and $$HCO_3^ - $$  are approximately equal.
Solution :
$$\eqalign{ & \mathop {{H_2}C{O_3}\left( {aq} \right)}\limits_{0.034 - x} + {H_2}O\left( l \right) \rightleftharpoons \mathop {HCO_3^ - \left( {aq} \right)}\limits_x + \mathop {{H_3}{O^ + }\left( {aq} \right)}\limits_x \cr & {K_1} = \frac{{\left[ {HCO_3^ - } \right]\left[ {{H_3}{O^ + }} \right]}}{{\left[ {{H_2}C{O_3}} \right]}} = \frac{{x \times x}}{{0.034 - x}} \cr & \Rightarrow 4.2 \times {10^{ - 7}} \simeq \frac{{{x^2}}}{{0.034}} \Rightarrow x = 1.195 \times {10^{ - 4}} \cr} $$
As $${H_2}C{O_3}$$  is a weak acid so the concentration of $${H_2}C{O_3}$$  will remain $$0.034$$  as $$0.034 > > x.$$
$$\eqalign{ & x = \left[ {{H^ + }} \right] = \left[ {HCO_3^ - } \right] = 1.195 \times {10^{ - 4}} \cr & {\text{Now,}}\,\,\mathop {HCO_3^ - }\limits_{x - y} \left( {aq} \right) + {H_2}O\left( l \right) \rightleftharpoons \mathop {CO_3^{2 - }}\limits_y \left( {aq} \right) + \mathop {{H_3}{O^ + }}\limits_y \left( {aq} \right) \cr} $$
As $$HCO_3^ - $$ is again a weak acid ( weaker than $${H_2}C{O_3}$$ ) with x >> y.
$${K_2} = \frac{{\left[ {CO_3^{2 - }} \right]\left[ {{H_3}{O^ + }} \right]}}{{\left[ {HCO_3^ - } \right]}} = \frac{{y \times \left( {x + y} \right)}}{{\left( {x - y} \right)}}$$
Note : $$\left[ {{H_3}{O^ + }} \right] = {H^ + }$$   from first step $$(x)$$  and from second step $$\left( y \right) = \left( {x + y} \right)$$
$$\eqalign{ & \left[ {{\text{As}}\,\,x > > y\,\,\,so\,\,\,x + y \simeq x\,\,\,{\text{and}}\,\,\,x - y \simeq x} \right] \cr & {\text{So}},\,{K_2} \simeq \frac{{y \times x}}{x} = y \cr & \Rightarrow {K_2} = 4.8 \times {10^{ - 11}} = y = \left[ {CO_3^{2 - }} \right] \cr & {\text{So the concentration of}}\,\left[ {{H^ + }} \right] \simeq \left[ {HCO_3^ - } \right] = \cr} $$
concentrations obtained from the first step. As the dissociation will be very low in second step so there will be no change in these concentrations. Thus the final concentrations are
$$\left[ {{H^ + }} \right] = \left[ {HCO_3^ - } \right] = 1.195 \times {10^{ - 4}}\& \,\left[ {CO_3^{2 - }} \right] = 4.8 \times {10^{ - 11}}$$

Releted MCQ Question on
Physical Chemistry >> Ionic Equilibrium

Releted Question 1

Molten sodium chloride conducts electricitry due to the presence of

A. free electrons
B. free ions
C. free molecules
D. atoms of sodium and chlorine
Releted Question 2

An acidic buffer solution can be prepared by mixing the solutions of

A. ammonium acetate and acetic acid
B. ammonium chloride and ammonioum hydroxide
C. sulphuric acid and sodium sulphate
D. sodium chloride and sodium hydroxide.
Releted Question 3

The $$pH$$ of a 10-8 molar solution of $$HCl$$  in water is

A. 8
B. -8
C. between 7 and 8
D. between 6 and 7
Releted Question 4

Of the given anions, the strongest Bronsted base is

A. $$CI{O^ - }$$
B. $$CIO_2^ - $$
C. $$CIO_3^ - $$
D. $$CIO_4^ - $$

Practice More Releted MCQ Question on
Ionic Equilibrium


Practice More MCQ Question on Chemistry Section