Question
If $$60\% $$ of a first order reaction was completed in $$60\,\min, $$ $$50\% $$ of the same reaction would be completed in approximately $$\left( {{\text{log}}\,4 = 0.60,{\text{log}}\,5 = 0.69} \right)$$
A.
$$50\,\min $$
B.
$$45\,\min $$
C.
$$60\,\min $$
D.
$$40\,\min $$
Answer :
$$45\,\min $$
Solution :
$$\eqalign{
& {\text{From first order reaction,}} \cr
& {\text{Rate constant,}} \cr
& k = \frac{{2.303}}{t}{\log _{10}}\frac{a}{{\left( {a - x} \right)}} \cr
& {k_1} = \frac{{2.303}}{{{t_1}}}{\text{log}}\frac{{{a_1}}}{{{a_1} - {x_1}}}\,\,\,...{\text{(i)}} \cr
& {k_2} = \frac{{2.303}}{{{t_2}}}{\text{log}}\frac{{{a_2}}}{{{a_2} - {x_2}}}\,\,\,...{\text{(ii)}} \cr
& {x_1} = \frac{{60}}{{100}}{a_1},{t_1} = 60 \cr
& {x_2} = \frac{{50}}{{100}}{a_2},{t_2} = ? \cr
& {\text{From Eqs}}{\text{. (i) and (ii)}} \cr} $$
$$\frac{{2.303}}{{{t_1}}}{\text{log}}\frac{{{a_1}}}{{{a_1} - {x_1}}}$$ $$ = \frac{{2.303}}{{{t_2}}}{\text{log}}\frac{{{a_2}}}{{{a_2} - {x_2}}}$$
$$\frac{{2.303}}{{60}}{\text{log}}\frac{{{a_1}}}{{\left( {{a_1} - \frac{{60}}{{100}}{a_1}} \right)}}$$ $$ = \frac{{2.303}}{{{t_2}}}{\text{log}}\frac{{{a_2}}}{{\left( {{a_2} - \frac{{50}}{{100}}{a_2}} \right)}}$$
$$\eqalign{
& \frac{{2.303}}{{60}}{\text{log}}\frac{{100{a_1}}}{{40{a_1}}} = \frac{{2.303}}{{{t_2}}}{\text{log}}\frac{{100{a_2}}}{{50{a_2}}} \cr
& \frac{1}{{60}}{\text{log}}\frac{{100}}{{40}} = \frac{1}{{{t_2}}}{\text{log}}\frac{{100}}{{50}} \cr
& {t_2} = \frac{{60\,{\text{log}}\frac{{100}}{{50}}}}{{{\text{log}}\frac{{100}}{{40}}}} = \frac{{60\left( {{\text{log}}\,10 - {\text{log}}\,5} \right)}}{{\left( {{\text{log}}\,10 - {\text{log}}\,4} \right)}} \cr
& \,\,\,\,\,\, = \frac{{60\left( {1 - 0.69} \right)}}{{\left( {1 - 0.60} \right)}} = \frac{{60 \times 0.31}}{{0.40}} \cr
& \,\,\,\,\,\, = 1.5 \times 31 = 46.5 \approx 45\min \cr} $$