How many moles of $$Pt$$ may be deposited on the cathode when $$0.80\,F$$ of electricity is passed through a $$1.0\,M$$ solution of $$P{t^{4 + }}?$$
A.
0.1 $$mol$$
B.
0.2 $$mol$$
C.
0.4 $$mol$$
D.
0.6 $$mol$$
Answer :
0.2 $$mol$$
Solution :
$$P{t^{4 + }} + 4{e^ - } \to Pt$$
$$4\,moles$$ or $$4\,F$$ of electricity is required to deposit $$1\,mole$$ of $$Pt.$$
$$0.80\,F$$ of electricity will deposit $$\frac{1}{4} \times 0.80 = 0.20\,mol$$
Releted MCQ Question on Physical Chemistry >> Electrochemistry
Releted Question 1
The standard reduction potentials at $$298 K$$ for the following half reactions are given against each
$$\eqalign{
& Z{n^{2 + }}\left( {aq} \right) + 2e \rightleftharpoons Zn\left( s \right)\,\,\,\,\,\,\,\,\, - 0.762 \cr
& C{r^{3 + }}\left( {aq} \right) + 2e \rightleftharpoons Cr\left( s \right)\,\,\,\,\,\,\,\,\, - 0.740 \cr
& 2{H^ + }\left( {aq} \right) + 2e \rightleftharpoons {H_2}\left( g \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,0.000 \cr
& F{e^{3 + }}\left( {aq} \right) + 2e \rightleftharpoons F{e^{2 + }}\left( {aq} \right)\,\,\,\,\,\,\,\,0.770 \cr} $$
which is the strongest reducing agent ?
A solution containing one mole per litre of each $$Cu{\left( {N{O_3}} \right)_2};AgN{O_3};H{g_2}{\left( {N{O_3}} \right)_2};$$ is being electrolysed by using inert electrodes. The values of standard electrode potentials in volts (reduction potentials) are :
$$\eqalign{
& Ag/A{g^ + } = + 0.80,\,\,2Hg/H{g_2}^{ + + } = + 0.79 \cr
& Cu/C{u^{ + + }} = + 0.34,\,Mg/M{g^{ + + }} = - 2.37 \cr} $$
With increasing voltage, the sequence of deposition of metals on the cathode will be :