Question
For the reaction, $${N_2}{O_5}\left( g \right) \to 2N{O_2}\left( g \right) + \frac{1}{2}{O_2}\left( g \right)$$ The value of rate of disappearance of $${N_2}{O_5}$$ is given as $$6.25 \times {10^{ - 3}}mol\,{L^{ - 1}}{s^{ - 1}}.$$ The rate of formation of $$N{O_2}$$ and $${O_2}$$ is given respectively as
A.
$$6.25 \times {10^{ - 3}}mol\,{L^{ - 1}}{s^{ - 1}}\,{\text{and}}\,6.25 \times {10^{ - 3}}mol\,{L^{ - 1}}{s^{ - 1}}$$
B.
$$1.25 \times {10^{ - 2}}mol\,{L^{ - 1}}{s^{ - 1}}\,{\text{and}}\,3.125 \times {10^{ - 3}}mol\,{L^{ - 1}}{s^{ - 1}}$$
C.
$$6.25 \times {10^{ - 3}}mol\,{L^{ - 1}}{s^{ - 1}}\,{\text{and}}\,3.125 \times {10^{ - 3}}mol\,{L^{ - 1}}{s^{ - 1}}$$
D.
$$1.25 \times {10^{ - 2}}mol\,{L^{ - 1}}{s^{ - 1}}\,{\text{and}}\,6.25 \times {10^{ - 3}}mol\,{L^{ - 1}}{s^{ - 1}}$$
Answer :
$$1.25 \times {10^{ - 2}}mol\,{L^{ - 1}}{s^{ - 1}}\,{\text{and}}\,3.125 \times {10^{ - 3}}mol\,{L^{ - 1}}{s^{ - 1}}$$
Solution :
Key Idea Rate of disappearance of reactant = rate of appearance of product
$${\text{or}}$$ $$ - \frac{1}{{{\text{Stoichiometric coefficient of reactant}}}}$$ $$\frac{{{\text{d [reactant]}}}}{{dt}}$$
$$ = + \frac{1}{{{\text{Stoichiometric coefficient}}\,{\text{of product}}}}$$ $$\frac{{{\text{d[product]}}}}{{dt}}$$
$$\eqalign{
& {\text{For the reaction,}} \cr
& {N_2}{O_5}\left( g \right) \to 2N{O_2}\left( g \right) + \frac{1}{2}{O_2}\left( g \right) \cr} $$
$$\frac{{ - d\left[ {{N_2}{O_5}} \right]}}{{dt}} = + \frac{1}{2}\frac{{d\left[ {N{O_2}} \right]}}{{dt}}$$ $$ = + \frac{{2\,d\left[ {{O_2}} \right]}}{{dt}}$$
$$\eqalign{
& \therefore \,\,\frac{{d\left[ {N{O_2}} \right]}}{{dt}} = - 2\frac{{d\left[ {{N_2}{O_5}} \right]}}{{dt}} \cr
& = 2 \times 6.25 \times {10^{ - 3}}\,mol\,{L^{ - 1}}{s^{ - 1}} \cr
& = 12.5 \times {10^{ - 3}}\,mol\,{L^{ - 1}}{s^{ - 1}} \cr
& = 1.25 \times {10^{ - 2}}\,mol\,{L^{ - 1}}{s^{ - 1}} \cr
& \frac{{d\left[ {{O_2}} \right]}}{{dt}} = - \frac{{d\left[ {{N_2}{O_5}} \right]}}{{dt}} \times \frac{1}{2} \cr
& = \frac{{6.25 \times {{10}^{ - 3}}mol\,{L^{ - 1}}{s^{ - 1}}}}{2} \cr
& = 3.125 \times {10^{ - 3}}\,mol\,{L^{ - 1}}{s^{ - 1}} \cr} $$