Question
Find the values of $$A, B$$ and $$C$$ in the following table for the reaction $$X + Y \to Z.$$ The reaction is of first order $$w.r.t$$ $$X$$ and zero order $$w.r.t.$$ $$Y.$$
| Exp. |
$$\left[ X \right]\left( {mol\,{L^{ - 1}}} \right)$$ |
$$\left[ Y \right]\left( {mol\,{L^{ - 1}}} \right)$$ |
Initial rate $$\left( {mol\,{L^{ - 1}}\,{s^{ - 1}}} \right)$$ |
| 1. |
0.1 |
0.1 |
$$2 \times {10^{ - 2}}$$ |
| 2. |
$$A$$ |
0.2 |
$$4 \times {10^{ - 2}}$$ |
| 3. |
0.4 |
0.4 |
$$B$$ |
| 4. |
$$C$$ |
0.2 |
$$2 \times {10^{ - 2}}$$ |
A.
$$A = 0.2\,mol\,{L^{ - 1}},$$ $$B = 8 \times {10^{ - 2}}\,mol\,{L^{ - 1}}\,{s^{ - 1}},$$ $$C = 0.1\,mol\,{L^{ - 1}}$$
B.
$$A = 0.4\,mol\,{L^{ - 1}},$$ $$B = 4 \times {10^{ - 2}}\,mol\,{L^{ - 1}}\,{s^{ - 1}},$$ $$C = 0.2\,mol\,{L^{ - 1}}$$
C.
$$A = 0.2\,mol\,{L^{ - 1}},$$ $$B = 2 \times {10^{ - 2}}\,mol\,{L^{ - 1}}{s^{ - 1}},$$ $$C = 0.4\,mol{L^{ - 1}}$$
D.
$$A = 0.4\,mol\,{L^{ - 1}},$$ $$B = 2 \times {10^{ - 2}}\,mol\,{L^{ - 1}}\,{s^{ - 1}},$$ $$C = 0.4\,mol\,{L^{ - 1}}$$
Answer :
$$A = 0.2\,mol\,{L^{ - 1}},$$ $$B = 8 \times {10^{ - 2}}\,mol\,{L^{ - 1}}\,{s^{ - 1}},$$ $$C = 0.1\,mol\,{L^{ - 1}}$$
Solution :
$${\text{Rate}} = k\left[ X \right]{\left[ Y \right]^0}$$
Rate is independent of the cone. of $$Y$$ and it depends only on the conc. of $$X$$ and it is the first order reaction.
From exp. $$\left( 1 \right),2 \times {10^{ - 2}} = k\left( {0.1} \right)\,\,\,...\left( {\text{i}} \right)$$
From exp. $$\left( 2 \right),4 \times {10^{ - 2}} = k\left( A \right)\,\,\,...\left( {{\text{ii}}} \right)$$
Dividing (ii) and (i), $$\frac{{4 \times {{10}^{ - 2}}}}{{2 \times {{10}^{ - 2}}}} = \frac{{k\left( A \right)}}{{k\left( {0.1} \right)}} = \frac{A}{{0.1}}$$
$$ \Rightarrow 2 \times 0.1 = A \Rightarrow A = 0.2\,mol\,{L^{ - 1}}$$
From exp. $$\left( 3 \right),B = k\left( {0.4} \right)\,\,\,...\left( {{\text{iii}}} \right)$$
Dividing (iii) and (i), $$\frac{B}{{2 \times {{10}^{ - 2}}}} = \frac{{k\left( {0.4} \right)}}{{k\left( {0.1} \right)}} = 4$$
$$ \Rightarrow B = 4 \times 2 \times 10 - 2 = $$ $$8 \times {10^{ - 2}}\,mol\,{L^{ - 1}}\,{s^{ - 1}}$$
From exp. $$\left( 4 \right),2 \times {10^{ - 2}} = k\left( C \right)\,\,\,...\left( {{\text{iv}}} \right)$$
Dividing (iv) and (i), $$\frac{{2 \times {{10}^{ - 2}}}}{{2 \times {{10}^{ - 2}}}} = \frac{{k\left( C \right)}}{{k\left( {0.1} \right)}} = \frac{C}{{0.1}}$$
$$ \Rightarrow C = 0.1\,mol\,{L^{ - 1}}$$