Question
Ethylene glycol is used as an antifreeze in a cold climate. Mass of ethylene glycol which should be added to $$4 kg$$ of water to prevent it from freezing at $$ - {6^ \circ }C$$ will be : ( $${K_f}$$ for water = $$1.86\,K\,kg\,mo{l^{ - 1}},$$ and molar mass of ethylene glycol = $$62\,g\,mo{l^{ - 1}}$$ )
A.
$$804.32 g$$
B.
$$204.30 g$$
C.
$$400.00 g$$
D.
$$304.60 g$$
Answer :
$$804.32 g$$
Solution :
\[\begin{align}
& \text{Given}\,{{K}_{f}}=1.86\,K\,kg\,mo{{l}^{-1}} \\
& \Delta {{T}_{f}}=0-\left( -6 \right)={{6}^{\circ }}C \\
& \text{As we know that} \\
& \Delta {{T}_{f}}={{K}_{f}}\times \text{molality} \\
& \text{=}\frac{{{K}_{f}}\times 1000\times \text{mass of solute}}{\begin{align}
& \text{molar mass of}\,\text{solute }\times \text{ mass of solvent in kg} \\
& \text{ }\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\
\end{align}} \\
& \text{Substituting given values in formula} \\
& 6=\frac{1.86\times 1000\times w}{62\times 4};\,w=0.8\,kg=800\,gm \\
& \\
\end{align}\]