Question
$$\eqalign{
& A{g^ + } + N{H_3} \rightleftharpoons {\left[ {Ag\left( {N{H_3}} \right)} \right]^ + }\,;\,{k_1} = 6.8 \times {10^{ - 3}} \cr
& {\left[ {Ag\left( {N{H_3}} \right)} \right]^ + } + N{H_3} \rightleftharpoons {\left[ {Ag{{\left( {N{H_3}} \right)}_2}} \right]^ + };{k_2} = 1.6 \times {10^{ - 3}} \cr} $$
then the formation constant of $${\left[ {Ag{{\left( {N{H_3}} \right)}_2}} \right]^ + }\,is$$
A.
$$6.8 \times {10^{ - 6}}$$
B.
$$1.08 \times {10^{ - 5}}$$
C.
$$1.08 \times {10^{ - 6}}$$
D.
$$6.8 \times {10^{ - 5}}$$
Answer :
$$1.08 \times {10^{ - 5}}$$
Solution :
$$\eqalign{
& {\text{The required reaction is}} \cr
& A{g^ + } + 2N{H_3} \rightleftharpoons {\left[ {Ag{{\left( {N{H_3}} \right)}_2}} \right]^ + };\,K = ? \cr
& {\text{From the given equations, we have}} \cr
& {k_1} = \frac{{{{\left[ {Ag\left( {N{H_3}} \right)} \right]}^ + }}}{{\left[ {A{g^ + }} \right]\left[ {N{H_3}} \right]}};\, \cr
& {k_2} = \frac{{{{\left[ {Ag{{\left( {N{H_3}} \right)}_2}} \right]}^ + }}}{{{{\left[ {Ag\left( {N{H_3}} \right)} \right]}^ + }\left[ {N{H_3}} \right]}} \cr
& \therefore \,{\text{The value of}}\,K\,{\text{is given by}} \cr
& K = {k_1} \times {k_2} \cr
& = 6.8 \times {10^{ - 3}} \times 1.6 \times {10^{ - 3}} \cr
& = 1.08 \times {10^{ - 5}}. \cr} $$