Question
Compounds $$'A'$$ and $$'B'$$ react according to the following chemical equation.
$${A_{\left( g \right)}} + 2{B_{\left( g \right)}} \to 2{C_{\left( g \right)}}$$
Concentration of either $$'A'$$ or $$'B'$$ were changed keeping the concentrations of one of the reactants constant and rates were measured as a function of initial concentration. Following results were obtained. Choose the correct option for the rate equations for this reaction.
| Experiment |
Initial concentration of $$\left[ A \right]/mol\,{L^{ - 1}}$$ |
Initial concentration of $$\left[ B \right]/mol\,{L^{ - 1}}$$ |
Initial rate of formation of $$\left[ C \right]/mol\,{L^{ - 1}}\,{s^{ - 1}}$$ |
| 1. |
0.30 |
0.30 |
0.10 |
| 2. |
0.30 |
0.60 |
0.40 |
| 3. |
0.60 |
0.30 |
0.20 |
A.
$${\text{Rate}} = k{\left[ A \right]^2}\left[ B \right]$$
B.
$${\text{Rate}} = k\left[ A \right]{\left[ B \right]^2}$$
C.
$${\text{Rate}} = k\left[ A \right]\left[ B \right]$$
D.
$${\text{Rate}} = k{\left[ A \right]^2}{\left[ B \right]^0}$$
Answer :
$${\text{Rate}} = k\left[ A \right]{\left[ B \right]^2}$$
Solution :
Let order with respect to $$A$$ and $$B$$ are $$x$$ and $$y$$ respectively.
$$\eqalign{
& \therefore \,{\text{Rate}} = k{\left( A \right)^x}{\left( B \right)^y} \cr
& \,\,\,\,\,0.1 = k{\left( {0.3} \right)^x}{\left( {0.3} \right)^y}...\left( {\text{i}} \right) \cr
& \,\,\,\,\,0.4 = k{\left( {0.3} \right)^x}{\left( {0.6} \right)^y}...\left( {{\text{ii}}} \right) \cr
& \,\,\,\,\,0.2 = k{\left( {0.6} \right)^x}{\left( {0.3} \right)^y}...\left( {{\text{iii}}} \right) \cr
& {\text{Dividing}}\left( {{\text{ii}}} \right){\text{by}}\left( {\text{i}} \right)\,\frac{{0.4}}{{0.1}} = \frac{{{{\left( {0.6} \right)}^y}}}{{{{\left( {0.3} \right)}^y}}} \cr
& \therefore \,y = 2 \cr
& {\text{Dividing}}\left( {{\text{iii}}} \right){\text{by}}\left( {\text{i}} \right)\,\frac{{0.2}}{{0.1}} = \frac{{{{\left( {0.6} \right)}^x}}}{{{{\left( {0.3} \right)}^x}}} \cr
& \therefore x = 1 \cr
& {\text{Rate law will be}}\,{\text{:}}\,{\text{Rate}} = k{\left[ A \right]^1}{\left[ B \right]^2} \cr} $$