211.
The solubility product of $$AgCl$$ is $$1.5625 \times {10^{ - 10}}$$ at $$25{\,^ \circ }C.$$ Its solubility in grams per litre will be
A
$$143.5$$
B
$$108$$
C
$$1.57 \times {10^{ - 8}}$$
D
$$1.79 \times {10^{ - 3}}$$
Answer :
$$1.79 \times {10^{ - 3}}$$
View Solution
Discuss Question
$$AgCl \rightleftharpoons \mathop {A{g^ + }}\limits_s + \mathop {C{l^ - }}\limits_s $$
$${s^2} = 1.5625 \times {10^{ - 10}};$$ $$s = 1.25 \times {10^{ - 5}}\,mol\,{L^{ - 1}}$$
$$\eqalign{
& {\text{Solubility in}}\,\,g\,{L^{ - 1}} \cr
& = {\text{Molar mass}}\, \times \,s \cr
& = 143.5 \times 1.25 \times {10^{ - 5}} \cr
& = 1.79 \times {10^{ - 3}}\,g\,{L^{ - 1}} \cr} $$
212.
The degree of dissociation of water at $${25^ \circ }C$$ is $$1.9 \times {10^{ - 7}}\% $$ and density is $$1.0g\,c{m^{ - 3}},$$ The ionic constant for water is
A
$$1.0 \times {10^{ - 10}}$$
B
$$1.0 \times {10^{ - 14}}$$
C
$$1.0 \times {10^{ - 16}}$$
D
$$1.0 \times {10^{ - 18}}$$
Answer :
$$1.0 \times {10^{ - 14}}$$
View Solution
Discuss Question
TIPS/Formulae :
$$\mathop {{H_2}O}\limits_{\left( {1 + \alpha } \right)c} \rightleftharpoons \mathop {{H^ + }}\limits_{\alpha c} + \mathop {O{H^ - }}\limits_{\alpha c} $$
$$\alpha = 1.9 \times {10^{ - 7}};\,{\text{Density}}\,{\text{of water}}$$ $${\text{ = }}\,\frac{{1.0\,gm}}{{c{m^3}}}$$
$$\therefore \,\,c = \frac{1}{{18}} \times 1000 = 55.56\,{\text{moles/l}}$$
$$\therefore \,\,\left[ {{H^ + }} \right] = 55.56 \times 1.9 \times {10^{ - 9}} = $$ $$1.055 \times {10^{ - 7}}$$
$$\left[ {\because \,1.9 \times {{10}^ - }\% = 1.9 \times {{10}^{ - 9}}} \right]$$
$$\therefore \,\,{K_w} = \left[ {{H^ + }} \right]\left[ {O{H^ - }} \right] = $$ $${\left( {1.055 \times {{10}^{ - 7}}} \right)^2} = 1.0 \times {10^{ - 14}}$$
213.
The solubility product of $$BaC{l_2}$$ is $$3.2 \times {10^{ - 9}}.$$ What will be its solubility in $$mol\,{L^{ - 1}}?$$
A
$$4 \times {10^{ - 3}}$$
B
$$3.2 \times {10^{ - 9}}$$
C
$$1 \times {10^{ - 3}}$$
D
$$1 \times {10^{ - 9}}$$
Answer :
$$1 \times {10^{ - 3}}$$
View Solution
Discuss Question
$$\eqalign{
& BaC{l_2} \rightleftharpoons B{a^{2 + }} + 2C{l^ - } \cr
& {K_{sp}} = \left[ {B{a^{2 + }}} \right]{\left[ {C{l^ - }} \right]^2} \cr
& \,\,\,\,\,\,\,\,\,\, = x \times {\left( {2x} \right)^2} \cr
& \,\,\,\,\,\,\,\,\,\, = 4{x^3} \cr} $$
$$4{x^3} = 3.2 \times {10^{ - 9}} \Rightarrow x = 9.28 \times {10^{ - 4}}$$ $$ = 0.928 \times {10^{ - 3}} \approx 1 \times {10^{ - 3}}$$
214.
The solubility product of a salt having general formula $$M{X_2},$$ in water is : $$4 \times {10^{ - 12}}.$$ The concentration of $${M^{2 + }}$$ ions in the aqueous solution of the salt is
A
$$4.0 \times {10^{ - 10}}\,M$$
B
$$1.6 \times {10^{ - 4}}\,M$$
C
$$1.0 \times {10^{ - 4}}\,M$$
D
$$2.0 \times {10^{ - 6}}\,M$$
Answer :
$$1.0 \times {10^{ - 4}}\,M$$
View Solution
Discuss Question
\[M{{X}_{2}}\rightleftharpoons {{\underset{s}{\mathop{M}}\,}^{++}}+{{\underset{2s}{\mathop{2X}}\,}^{-}}\]
$${\text{Where s is the solubility of }}M{X_2}$$
$${\text{then}}\,\,{K_{sp}} = 4{s^3};\,s \times {\left( {2s} \right)^2} = 4 \times {10^{ - 12}}$$ $$ = 4{s^3};s = 1 \times {10^{ - 4}}$$
$$\therefore \left[ {{M^{ + + }}} \right] = s = 1\left[ {{M^{ + + }}} \right] = 10 \times {10^{ - 4}}$$
215.
If $$p{K_b}$$ for fluoride ion at $${25^ \circ }C$$ is $$10.83,$$ the ionisation constant of hydrofluoric acid in water at this temperature is
A
$$3.52 \times {10^{ - 3}}$$
B
$$6.75 \times {10^{ - 4}}$$
C
$$5.38 \times {10^{ - 2}}$$
D
$$1.74 \times {10^{ - 5}}$$
Answer :
$$6.75 \times {10^{ - 4}}$$
View Solution
Discuss Question
$$\eqalign{
& {K_w} = {K_a} \times {K_b} \cr
& {K_b} = {10^{ - 10.83}} \cr
& = 1.48 \times {10^{ - 11}} \cr
& \therefore \,\,{K_a} = \frac{{{K_w}}}{{{K_b}}} \cr
& = \frac{{{{10}^{ - 14}}}}{{1.48 \times {{10}^{ - 11}}}} \cr
& = 6.75 \times {10^{ - 4}} \cr} $$
216.
Solid $$Ba{\left( {N{O_3}} \right)_2}$$ is gradually dissolved in a $$1.0 \times {10^{ - 4}}\,M\,N{a_2}C{O_3}$$ solution. At which concentration of $$B{a^{2 + }},$$ precipitate of $$BaC{O_3}$$ begins to form ? $$\left( {{K_{sp}}\,{\text{for}}\,BaC{O_3} = 5.1 \times {{10}^{ - 9}}} \right)$$
A
$$5.1 \times {10^{ - 5}}M$$
B
$$7.1 \times {10^{ - 8}}M$$
C
$$4.1 \times {10^{ - 5}}M$$
D
$$8.1 \times {10^{ - 7}}M$$
Answer :
$$5.1 \times {10^{ - 5}}M$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Given}}\,\,{\text{N}}{{\text{a}}_2}C{O_3} = 1.0 \times {10^{ - 4}}M \cr
& \therefore \,\,\left[ {CO_3^{2 - }} \right] = 1.0 \times {10^{ - 4}}M \cr
& i.e.\,\,\,s = 1.0 \times {10^{ - 4}}M \cr
& {\text{At equilibrium}} \cr
& \left[ {B{a^{2 + }}} \right]\left[ {CO_3^{2 - }} \right] = {K_{sp}}\,{\text{of}}\,BaC{O_3} \cr
& \left[ {B{a^{2 + }}} \right] = \frac{{{K_{sp}}}}{{\left[ {CO_3^{2 - }} \right]}} \cr
& = \frac{{5.1 \times {{10}^{ - 9}}}}{{1.0 \times {{10}^{ - 4}}}} \cr
& = 5.1 \times {10^{ - 5}}M \cr} $$
217.
The percentage hydrolysis of $$0.15\,M$$ solution of ammonium acetate, $${K_a}$$ for $$C{H_3}COOH$$ is $$1.8 \times {10^{ - 5}}$$ and $${K_b}$$ for $$N{H_3}$$ is $$1.8 \times {10^{ - 5}}$$
A
0.55
B
4.72
C
9.38
D
5.56
Answer :
0.55
View Solution
Discuss Question
$$\eqalign{
& \alpha = \sqrt {\frac{{{K_w}}}{{{K_a} \times {K_b}}}} \cr
& = \sqrt {\frac{{1 \times {{10}^{ - 14}}}}{{1.8 \times {{10}^{ - 5}} \times 1.8 \times {{10}^{ - 5}}}}} \cr
& = 0.55\% \cr} $$
218.
Which one is more acidic in aqueous solution.
A
$$NiC{l_2}$$
B
$$FeC{l_3}$$
C
$$AlC{l_3}$$
D
$$BeC{l_2}$$
Answer :
$$AlC{l_3}$$
View Solution
Discuss Question
Salts of weak base and strong acid get hydrolysed in
aqueous solution forming an acidic solution.
$$\mathop {AlC{l_3}}\limits_{\left( {{\text{weak}}} \right)} + 3{H_2}O \to \mathop {Al{{\left( {OH} \right)}_3}}\limits_{\left( {{\text{strong}}} \right)} + \mathop {3HCl}\limits_{\left( {{\text{acidic}}} \right)} $$
219.
A solution containing $$M{n^{2 + }},F{e^{2 + }},Z{n^{2 + }}$$ and $$H{g^{2 + }}$$ with a molar concentration of $${10^{ - 3}}M$$ each is treated with $${10^{ - 16}}M$$ sulphide ion solution. Which ions will precipitate first if $${K_{sp}}$$ of $$MnS,FeS,ZnS$$ and $$HgS$$ are $${10^{ - 15}},{10^{ - 23}},{10^{ - 20}}$$ and $${10^{ - 54}}$$ respectively?
A
$$FeS$$
B
$$MnS$$
C
$$HgS$$
D
$$ZnS$$
Answer :
$$HgS$$
View Solution
Discuss Question
$${M^{2 + }} + {s^{2 - }} \to MS$$
Lower the value of $${K_{sp}},$$ lower will be solubility. Hence, $$HgS$$ will precipitate first.
220.
The ionisation constant of ammonium hydroxide is $$1.77 \times {10^{ - 5}}$$ at $$298\,K.$$ Hydrolysis constant of ammonium chloride is
A
$$5.65 \times {10^{ - 10}}$$
B
$$6.50 \times {10^{ - 12}}$$
C
$$5.65 \times {10^{ - 13}}$$
D
$$5.65 \times {10^{ - 12}}$$
Answer :
$$5.65 \times {10^{ - 10}}$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Given,}}\,{K_a}\left( {N{H_4}OH} \right) = 1.77 \times {10^{ - 5}} \cr
& N{H_4}OH \rightleftharpoons NH_4^ + + O{H^ - } \cr
& {K_a} = \frac{{\left[ {NH_4^ + } \right]\left[ {O{H^ - }} \right]}}{{\left[ {N{H_4}OH} \right]}} \cr
& \,\,\,\,\,\,\,\, = 1.77 \times {10^{ - 5}}\,\,\,\,...{\text{(i)}} \cr
& {\text{Hydrolysis of}}\,N{H_4}Cl\,{\text{takes place as,}} \cr
& N{H_4}Cl + {H_2}O \to N{H_4}OH + HCl \cr
& {\text{or}}\,\,NH_4^ + + {H_2}O \to N{H_4}OH + {H^ + } \cr
& {\text{Hydrolysis constant,}} \cr
& \,\,\,\,\,\,{K_h} = \frac{{\left[ {N{H_4}OH} \right]\left[ {{H^ + }} \right]}}{{\left[ {NH_4^ + } \right]}}...{\text{(ii)}} \cr
& {\text{or}}\,{{\text{K}}_h} = \frac{{\left[ {N{H_4}OH} \right]\left[ {{H^ + }} \right]\left[ {O{H^ - }} \right]}}{{\left[ {NH_4^ + } \right]\left[ {O{H^ - }} \right]}}...{\text{(iii)}} \cr
& {\text{From Eqs}}{\text{. (i), (ii) and (iii)}} \cr
& {{\text{K}}_h} = \frac{{{K_w}}}{{{K_a}}}\,\,\,\left[ {\because \,\,\left[ {{H^ + }} \right]\left[ {O{H^ - }} \right] = {K_w}} \right] \cr
& \,\,\,\,\,\,\,\, = \frac{{{{10}^{ - 14}}}}{{1.77 \times {{10}^{ - 5}}}} \cr
& \,\,\,\,\,\,\,\, = 5.65 \times {10^{ - 10}} \cr} $$