181.
Given the data at $${25^ \circ }C$$
$$\eqalign{
& Ag + {I^ - } \to AgI + {e^ - }\,\,\,\,\,\,{E^ \circ } = 0.152\,V \cr
& Ag \to A{g^ + } + {e^ - }\,\,\,\,\,\,\,\,\,\,\,\,\,\,{E^ \circ } = - 0.800\,V \cr} $$
What is the value of log $${K_{sp}}$$ for $$AgI?$$ $$( 2.303 RT/F = 0.059 V )$$
A
$$- 37.83$$
B
$$- 16.13$$
C
$$- 8.12$$
D
$$+ 8.612$$
Answer :
$$- 16.13$$
View Solution
Discuss Question
$$\eqalign{
& \left( {\text{i}} \right)\,\,Ag \to A{g^ + } + {e^ - }\,\,\,\,\,\,{E^ \circ } = - 0.800\,V \cr
& {\text{(ii)}}Ag + {I^ - } \to AgI + {e^ - }\,\,\,{E^ \circ } = 0.152\,V \cr
& {\text{From (i) and (ii) we have,}} \cr
& AgI \to A{g^ + } + {I^ - }\,\,\,\,{E^ \circ } = - 0.952\,V \cr
& E_{cell}^o = \frac{{0.059}}{n}\log \,K \cr
& \therefore \,\, - 0.952 = \frac{{0.059}}{1}\log \,\left[ {A{g^ + }} \right]\left[ {{I^ - }} \right]\,\,\left[ {\because \,\,k = \left[ {A{g^ + }} \right]\left[ {{I^ - }} \right]} \right] \cr
& {\text{or}}\,\, - \frac{{0.952}}{{0.059}} = \log \,{K_{sp}}\,\,{\text{or}}\,\, - 16.13 = \log \,{K_{sp}} \cr} $$
182.
Which of the following solutions will have $$pH$$ close to 1.0 ?
A
$$100\,ml\,{\text{of}}\,\left( {M/10} \right)\,HCl + 100\,ml\,{\text{of}}\,\left( {M/10} \right)\,NaOH$$
B
$$55\,ml\,{\text{of}}\,\left( {M/10} \right)\,HCl + 45\,ml\,{\text{of}}\,\left( {M/10} \right)\,NaOH$$
C
$$10\,ml\,{\text{of}}\,\left( {M/10} \right)\,HCl + 90\,ml\,{\text{of}}\,\left( {M/10} \right)\,NaOH$$
D
$$75\,ml\,{\text{of}}\,\left( {M/S} \right)\,HCl + 25\,ml\,{\text{of}}\,\left( {M/S} \right)\,NaOH$$
Answer :
$$75\,ml\,{\text{of}}\,\left( {M/S} \right)\,HCl + 25\,ml\,{\text{of}}\,\left( {M/S} \right)\,NaOH$$
View Solution
Discuss Question
(A) It is not correct answer because $$100\,ml\,M/10\,HCl$$
will completely neutralise $$100\,ml\,M/10\,NaOH$$ and
the solution will be neutral.
(B) After neutralisation resultant solution will be acidic
due to presence of excess of $$HCl.$$
(C) After netralisation resultant solution will be basic
due to presence of excess of $$NaOH.$$
(D) $$M.eq.$$ of $$HCl = 75\,N/5 = 15Meq$$
$$\eqalign{
& M.eq.NaOH = 25 \times \frac{1}{5} = 5Meq \cr
& \therefore \,M.eq{\text{.}}\,{\text{of}}\,\,HCl\,\,{\text{left}} = 10\,\,\,\therefore \left[ {HCl} \right] = \frac{{10}}{{100}} = M/10 \cr
& \therefore \,\,pH = - \log \left[ {{H^ + }} \right] = - \log \left[ {\frac{1}{{10}}} \right] = 1 \cr} $$
183.
Solubility of a $${M_2}S$$ type salt is $$3.5 \times {10^{ - 6}},$$ then find out its solubility product.
A
$$1.7 \times {10^{ - 6}}$$
B
$$1.7 \times {10^{ - 16}}$$
C
$$1.7 \times {10^{ - 18}}$$
D
$$1.7 \times {10^{ - 12}}$$
Answer :
$$1.7 \times {10^{ - 16}}$$
View Solution
Discuss Question
$$\eqalign{
& {\text{Solubility of}}\,{M_2}S\,\,{\text{salt is }}3.5 \times {10^{ - 6}}M \cr
& \mathop {{M_2}S\,}\limits_{3.5 \times {{10}^{ - 6}}M} \, \rightleftharpoons \mathop {2{M^ + }}\limits_{2 \times 3.5 \times {{10}^{ - 6}}M} + \mathop {{S^{2 - }}}\limits_{3.5 \times {{10}^{ - 6}}M} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{\text{on}}\,\,100\% \,\,{\text{ionisation}}} \right) \cr
& \therefore \,\,{K_{sp}}\left( {{\text{solubility product of}}\,{M_2}S} \right) \cr
& = {\left[ {{M^ + }} \right]^2}\left[ {{S^{2 - }}} \right] \cr
& = {\left( {7.0 \times {{10}^{ - 6}}} \right)^2}\left( {3.5 \times {{10}^{ - 6}}} \right) \cr
& = 171.5 \times {10^{ - 18}} \cr
& = 1.71 \times {10^{ - 16}}{\left[ M \right]^3} \cr} $$
184.
A solution contains $$10\,mL\,0.1\,N\,NaOH$$ and $$10\,mL\,0.05\,N\,{H_2}S{O_4},pH$$ of this solution is :
A
less than 7
B
7
C
zero
D
greater than 7
Answer :
7
View Solution
Discuss Question
Milliequivalents of $$NaOH = 10 \times 0.1 = 1$$
Milliequivalents of $${H_2}S{O_4} = 10 \times 0.05 = 0.5$$
$$\mathop {2NaOH}\limits_{2\,equ.} + \mathop {{H_2}S{O_4}}\limits_{1\,equ.} \to N{a_2}S{O_4} + {H_2}O$$
∴ 1 equivalent of $$NaOH$$ reacts with $$0.5\,eq.$$ of $${H_2}S{O_4}$$ to give neutral $$\left( {pH = 7} \right)$$ solution.
185.
The compound insoluble in acetic acid is :
A
calcium oxide
B
calcium carbonate
C
calcium oxalate
D
calcium hydroxide
Answer :
calcium oxalate
View Solution
Discuss Question
$$CaO,\,CaC{O_3}\,{\text{and}}\,Ca{\left( {OH} \right)_2}$$ dissolve in $$C{H_3}COOH$$ due to formation of $${\left( {C{H_3}COO} \right)_2}Ca.$$ But $$Ca{C_2}{O_4}$$ does not dissolve as $$C{H_3}CO{O^ - }$$ is a stronger conjugate base than $${C_2}O_4^{2 - }.$$
186.
Solubility product constant $$\left( {{K_{sp}}} \right)$$ of salts of types $$MX,M{X_2}\,{\text{and}}\,{M_3}X$$ at temperature T are 4.0 × 10-8 , 3.2 × 10-14 & 2.7 × 10-15 , respectively. Solubilities ( mol dm-3 ) of the salts at temperature $$'T'$$ are in the order —
A
$$MX > M{X_2} > {M_3}X$$
B
$${M_3}X > M{X_2} > MX$$
C
$$M{X_2} > {M_3}X > MX$$
D
$$MX > {M_3}X > M{X_2}$$
Answer :
$$MX > {M_3}X > M{X_2}$$
View Solution
Discuss Question
$$MX \to \mathop {{M^ + }}\limits_s + \mathop {{X^ - }}\limits_s $$
$${\text{(Where sis the solubility)}}$$
$$\eqalign{
& {\text{Then}}\,{K_{sp}} = {S^2}\,\,\,\,{\text{or}}\,s = \sqrt {{K_{sp}}} \cr
& {\text{Similarly for}}\,M{X_2} \to {M^{2 + }} + 2{X^ - } \cr
& {K_{sp}} = s \times {\left( {2s} \right)^2} = 4{s^3}\,\,\,{\text{or}}\,\,s = {\left[ {\frac{{{K_{sp}}}}{4}} \right]^{\frac{1}{3}}} \cr} $$
\[\text{and}\,\text{for}\,\,{{M}_{3}}X\to 3{{\underset{3s}{\mathop{M}}\,}^{+}}+{{\underset{s}{\mathop{X}}\,}^{-3}}\]
$${K_{sp}} = {\left( {3s} \right)^3} \times s = 27{s^4}\,\,\,s = {\left[ {\frac{{{K_{sp}}}}{{27}}} \right]^{\frac{1}{4}}}$$
From the given values of $${{K_{sp}}}$$ for $$MX,M{X_2}\,{\text{and}}\,{M_3}X$$ we can find the solubilities of those salts at temperature, $$T.$$
$$\eqalign{
& {\text{Solubility}}\,{\text{of}}\,MX{\text{ = }}\sqrt {4 \times {{10}^{ - 8}}} = 2 \times {10^{ - 4}} \cr
& {\text{Solubility}}\,{\text{of }}M{X_2} = {\left[ {\frac{{3.2 \times {{10}^{ - 14}}}}{4}} \right]^{\frac{1}{3}}}\,\,\,{\text{or }}{\left[ {\frac{{32}}{4} \times {{10}^{ - 15}}} \right]^{\frac{1}{3}}} \cr
& = {\left[ {8 \times {{10}^{ - 15}}} \right]^{\frac{1}{3}\,\,}}\,\,\,\,\,\,{\text{or}}\,\,\,\,\,2 \times {10^{ - 15}} \cr
& {\text{Solubility of}}\,{M_3}X = {\left[ {\frac{{2.7 \times {{10}^{ - 15}}}}{{27}}} \right]^{\frac{1}{4}}} \cr
& = {\left[ {{{10}^{ - 16}}} \right]^{\frac{1}{4}}}\,\,\,{\text{or}}\,\,\,\,{10^{ - 4}} \cr} $$
Thus the solubilities are in the order $$MX > {M_3}X > M{X_2}$$
i.e the correct t anser is (D) .
187.
The precipitate of $$Ca{F_2}\left( {{K_{sp}} = 1.7 \times {{10}^{ - 10}}} \right)$$ is obtained when equal volumes of the following are mixed
A
$${10^{ - 4}}M\,C{a^{2 + }} + {10^{ - 4}}M\,{F^ - }$$
B
$${10^{ - 2}}M\,C{a^{2 + }} + {10^{ - 3}}M\,{F^ - }$$
C
$${10^{ - 5}}M\,C{a^{2 + }} + {10^{ - 3}}M\,{F^ - }$$
D
$${10^{ - 3}}M\,C{a^{2 + }} + {10^{ - 5}}M\,{F^ - }$$
Answer :
$${10^{ - 2}}M\,C{a^{2 + }} + {10^{ - 3}}M\,{F^ - }$$
View Solution
Discuss Question
TIPS/Formulae :
For precipitation to occur ionic product > solubility products
$$\eqalign{
& {\text{Given,}}\,\,{K_{sp}}Ca{F_2} = 1.7 \times {10^{ - 10}} \cr
& Ca{F_2} \rightleftharpoons C{a^{2 + }} + 2{F^ - } \cr
& {\text{Ionic product of}}\,\,{\text{Ca}}{{\text{F}}_2} = \left[ {C{a^{2 + }}} \right]{\left[ {{F^ - }} \right]^2} \cr
& {\text{Calculate LP}}{\text{. in each case}} \cr
& {\text{(a) I}}{\text{.P}}{\text{. of Ca}}{{\text{F}}_2} = \left( {{{10}^{ - 4}}} \right) \times {\left( {{{10}^{ - 4}}} \right)^2} = {10^{ - 12}} \cr
& {\text{(b) I}}{\text{.P}}{\text{. of Ca}}{{\text{F}}_2} = \left( {{{10}^{ - 2}}} \right) \times {\left( {{{10}^{ - 3}}} \right)^2} = {10^{ - 8}} \cr
& {\text{(c) I}}{\text{.P}}{\text{. of Ca}}{{\text{F}}_2} = \left( {{{10}^{ - 5}}} \right) \times {\left( {{{10}^{ - 3}}} \right)^2} = {10^{ - 11}} \cr
& {\text{(d) I}}{\text{.P}}{\text{. of Ca}}{{\text{F}}_2} = \left( {{{10}^{ - 3}}} \right) \times {\left( {{{10}^{ - 5}}} \right)^2} = {10^{ - 13}} \cr
& \because \,\,{\text{I}}{\text{.P}} > {\text{solubility in choice (b) only}}{\text{.}} \cr
& \therefore \,\,{\text{ppt of}}\,Ca{F_2}\,{\text{is obtained in case of choice (b) only}} \cr} $$
188.
In a saturated solution of the sparingly soluble strong electrolyte $$AgI{O_3}$$ (molecular mass = 283) the equilibrium which sets in is $$AgI{O_{3\left( s \right)}} \rightleftharpoons A{g^ + }_{\left( {aq} \right)} + IO_{3\left( {aq} \right)}^ - .$$ If the solubility
product constant $${K_{sp}}$$ of $$AgI{O_3}$$ at a given temperature is $$1.0 \times {10^{ - 8}},$$ what is the mass of $$AgI{O_3}$$ contained in $$100 ml$$ of
its saturated solution?
A
$$1.0 \times {10^{ - 4}}g$$
B
$$28.3 \times {10^{ - 2}}g$$
C
$$2.83 \times {10^{ - 3}}g$$
D
$$1.0 \times {10^{ - 7}}g$$
Answer :
$$2.83 \times {10^{ - 3}}g$$
View Solution
Discuss Question
$${\text{Let}}\,s = {\text{solubility}}$$
\[AgI{{O}_{3}}\rightleftharpoons {{\underset{s}{\mathop{Ag}}\,}^{+}}+\underset{s}{\mathop{I{{O}_{3}}^{-}}}\,\]
$$\eqalign{
& {K_{sp}} = \left[ {A{g^ + }} \right]\left[ {I{O_3}^ - } \right] = s \times s = {s^2} \cr
& {\text{Given}}\,\,{K_{sp}} = 1 \times {10^{ - 8}} \cr
& \therefore \,\,s = \sqrt {{K_{sp}}} = \sqrt {1 \times {{10}^{ - 8}}} \cr
& = 1.0 \times {10^{ - 4}}\,mol/lit = 1.0 \times {10^{ - 4}} \times 283\,g/lit \cr
& \left( {\because \,\,{\text{Molecular mass of}}\,Ag\,I{O_3} = 283} \right) \cr
& = \frac{{1.0 \times {{10}^{ - 4}} \times 283 \times 100}}{{1000}}gm/100\,ml \cr
& = 2.83 \times {10^{ - 3}}gm/100\,ml \cr} $$
189.
$$0.05\,mole$$ of $$NaOH$$ is added to 5 litres of water. What will be the $$pH$$ of the solution?
A
12
B
7
C
2
D
10
Answer :
12
View Solution
Discuss Question
$${\text{Conc}}{\text{. of}}\,\,NaOH = \frac{{0.05}}{5}$$ $$ = 0.01\,\,{\text{or}}\,\,{10^{ - 2}}M$$
$$\eqalign{
& \left[ {O{H^ - }} \right] = {10^{ - 2}}M \cr
& \left[ {{H^ + }} \right] = \frac{{{K_w}}}{{\left[ {O{H^ - }} \right]}} = \frac{{{{10}^{ - 14}}}}{{{{10}^{ - 2}}}} = {10^{ - 12}} \cr} $$
$$pH = - \log \left[ {{H^ + }} \right] = $$ $$ - \log {10^{ - 12}} = 12$$
190.
Which equilibrium can be described as an acid-base reaction using the Lewis acid-base definition but not using the Bronsted-Lowry definition?
A
\[2N{{H}_{3}}+{{H}_{2}}S{{O}_{4}}\rightleftharpoons 2NH_{4}^{+}+SO_{4}^{2-}\]
B
\[N{{H}_{3}}+C{{H}_{3}}COOH\rightleftharpoons NH_{4}^{+}+C{{H}_{3}}CO{{O}^{-}}\]
C
\[{{H}_{2}}O+C{{H}_{3}}COOH\rightleftharpoons {{H}_{3}}{{O}^{+}}+C{{H}_{3}}CO{{O}^{-}}\]
D
\[{{\left[ Cu\left( {{H}_{2}}{{O}_{4}} \right) \right]}^{2+}}+4N{{H}_{3}}\rightleftharpoons {{\left[ Cu{{\left( N{{H}_{3}} \right)}_{4}} \right]}^{2+}}+4{{H}_{2}}O\]
Answer :
\[{{\left[ Cu\left( {{H}_{2}}{{O}_{4}} \right) \right]}^{2+}}+4N{{H}_{3}}\rightleftharpoons {{\left[ Cu{{\left( N{{H}_{3}} \right)}_{4}} \right]}^{2+}}+4{{H}_{2}}O\]
View Solution
Discuss Question
$${\left[ {Cu{{\left( {{H_2}O} \right)}_4}} \right]^{2 + }} + 4N{H_3} \rightleftharpoons $$ $${\left[ {Cu{{\left( {N{H_3}} \right)}_4}} \right]^{2 + }} + 4{H_2}O$$ involves lose and gain of electrons. $${H_2}O$$ is coordinated to $$Cu$$ by donating electrons $$(LHS).$$ It is then removed by withdrawing electrons.