171.
The first and second dissociation constants of an acid $${H_2}A$$ are $$1.0 \times {10^{ - 5}}$$ and $$5.0 \times {10^{ - 10}}$$ respectively. The overall dissociation constant of the acid will be
A
$$0.2 \times {10^5}$$
B
$$5.0 \times {10^{ - 5}}$$
C
$$5.0 \times {10^{15}}$$
D
$$5.0 \times {10^{ - 15}}$$
Answer :
$$5.0 \times {10^{ - 15}}$$
View Solution
Discuss Question
$$\eqalign{
& {H_2}A \rightleftharpoons {H^ + } + H{A^ - } \cr
& \therefore \,\,{K_1} = 1.0 \times {10^{ - 5}} \cr
& = \frac{{\left[ {{H^ + }} \right]\left[ {H{A^ - }} \right]}}{{\left[ {{H_2}A} \right]}}\,\,{\text{(Given)}} \cr
& H{A^ - } \to {H^ + } + {A^{2 - }} \cr
& \therefore \,\,{K_2} = 5.0 \times {10^{ - 10}} \cr
& = \frac{{\left[ {{H^ + }} \right]\left[ {{A^{2 - }}} \right]}}{{\left[ {H{A^ - }} \right]}}\,{\text{(Given)}} \cr
& K = \frac{{{{\left[ {{H^ + }} \right]}^2}\left[ {{A^{2 - }}} \right]}}{{\left[ {{H_2}A} \right]}} \cr
& = {K_1} \times {K_2} \cr
& = \left( {1.0 \times {{10}^{ - 5}}} \right) \times \left( {5 \times {{10}^{ - 10}}} \right) \cr
& = 5 \times {10^{ - 15}} \cr} $$
172.
The conjugate base of $${H_2}PO_4^ - $$ is
A
$${H_3}P{O_4}$$
B
$${P_2}{O_5}$$
C
$$PO_4^{3 - }$$
D
$$HPO_4^{2 - }$$
Answer :
$$HPO_4^{2 - }$$
View Solution
Discuss Question
NOTE : Conjugate acid-base differ by $${H^ + }$$
\[\mathop {{H_2}PO_4^ - }\limits_{{\text{Acid}}} \xrightarrow{{ - {H^ + }}}\mathop {HPO_4^{ - - }}\limits_{{\text{conjugate base}}} \]
173.
The dissociation constant of 0.1 $$M$$ acetic acid solution is $$1.8 \times {10^{ - 5}}.$$ If $$1\,L$$ of this solution is mixed with $$0.05\,mole$$ of $$HCl,$$ what will be $$pH$$ of mixture ?$$\left[ {\log \,5 = 0.7} \right]$$
A
1.3
B
2.6
C
1.9
D
3.4
Answer :
1.3
View Solution
Discuss Question
The $$pH$$ of mixture is due to the $$HCl$$ only, because $$C{H_3}COOH$$ is negligibly ionised due to common ion effect. Thus,
$$\eqalign{
& \left[ {{H^ + }} \right] = 0.05\,M = 5 \times {10^{ - 2}}M \cr
& pH = - \log \left( {5 \times {{10}^{ - 2}}} \right) \cr
& = - \left[ {\log \,5 + \log \,{{10}^{ - 2}}} \right] \cr
& pH = 1.3 \cr} $$
174.
Of the given anions, the strongest Bronsted base is
A
$$CI{O^ - }$$
B
$$CIO_2^ - $$
C
$$CIO_3^ - $$
D
$$CIO_4^ - $$
Answer :
$$CI{O^ - }$$
View Solution
Discuss Question
TIPS/Formulae :
(i) Lower the oxidation state of central atom, weaker will be oxy acid.
(ii) Weaker the acid, stronger will be its conjugate base.
Oxidation state of $$Cl$$ in $$HClO$$ is + 1, in $$HCl{O_2}$$ is + 3, in $$HCl{O_3}$$ is + 5, and in $$HCl{O_4}$$ is + 7
∴ $$HClO$$ is the weakest acid and so its conjugate base $$Cl{O^ - }$$ is the strongest Bronsted base.
175.
The $$p{K_a}$$ of a weak acid $$(HA)$$ is 4.5. The $$pOH$$ of an aqueous buffer solution of $$HA$$ in which $$50\% $$ of the acid is ionized is
A
7.0
B
4.5
C
2.5
D
9.5
Answer :
9.5
View Solution
Discuss Question
$${\text{For acidic buffer }}pH = $$ $$p{K_a} + \log \left[ {\frac{{{\text{salt}}}}{{{\text{acid}}}}} \right]$$
$${\text{or}}\,\,pH = p{K_a} + \log \frac{{\left[ {{A^ - }} \right]}}{{\left[ {HA} \right]}}$$
Given $$p{K_a} = 4.5$$ and acid is 50% ionised.
$$\left[ {HA} \right] = \left[ {{A^ - }} \right]$$ ( when acid is 50% ionised )
$$\eqalign{
& \therefore \,\,pH = p{K_a} + \log \,{\text{1}}\,\,\,\therefore \,pH = p{K_a} = 4.5 \cr
& pOH = 14 - pH = 14 - 4.5 = 9.5 \cr} $$
176.
At a certain temperature the dissociation constants of formic acid and acetic acid are $$1.8 \times {10^{ - 4}}$$ and $$1.8 \times {10^{ - 6}}$$ respectively. The concentration of acetic acid solution in which the hydrogen ion has the same concentration as in $$0.001\,M$$ formic acid solution is equal to
A
0.001 $$M$$
B
0.01 $$\,M$$
C
0.1 $$\,M$$
D
0.0001 $$\,M$$
Answer :
0.01 $$\,M$$
View Solution
Discuss Question
$$\left[ {{H^ + }} \right] = \sqrt {C \times {K_a}} = \sqrt {0.001 \times 1.8 \times {{10}^{ - 4}}} $$ for formic acid
$$\left[ {{H^ + }} \right] = \sqrt {{C_2} \times 1.8 \times {{10}^{ - 5}}} $$ for acetic acid Equating and solving, $${C_2} = 0.01\,M.$$
177.
Which one of the following arrangements represents the correct order of solubilities of sparingly soluble salts $$H{g_2}C{l_2},C{r_2}{\left( {S{O_4}} \right)_3},BaS{O_4}$$ and $$CrC{l_3}$$ respectively ?
A
$$BaS{O_4} > H{g_2}C{l_2} > C{r_2}{\left( {S{O_4}} \right)_3} > CrC{l_3}$$
B
$$BaS{O_4} > H{g_2}C{l_2} > CrC{l_3} > C{r_2}{\left( {S{O_4}} \right)_3}$$
C
$$BaS{O_4} > CrC{l_3} > H{g_2}C{l_2} > C{r_2}{\left( {S{O_4}} \right)_3}$$
D
$$H{g_2}C{l_2} > BaS{O_4} > CrC{l_3} > C{r_2}{\left( {S{O_4}} \right)_3}$$
Answer :
$$BaS{O_4} > H{g_2}C{l_2} > CrC{l_3} > C{r_2}{\left( {S{O_4}} \right)_3}$$
View Solution
Discuss Question
$$\eqalign{
& C{r_2}{\left( {S{O_4}} \right)_3} \rightleftharpoons \mathop {2C}\limits_{2s} {r^{3 + }} + \mathop {3S}\limits_{3s} O_4^{2 - } \cr
& {K_{sp}} = {\left( {2s} \right)^2}{\left( {3s} \right)^3} = 4{s^2} \times 27{s^3} = 108{s^5} \cr
& s = {\left( {\frac{{{K_{sp}}}}{{108}}} \right)^{\frac{1}{5}}} \cr
& H{g_2}C{l_2} \rightleftharpoons 2\mathop {Hg_{}^{2 + }}\limits_{2s} + 2\mathop {C{l^ - }}\limits_{2s} \cr
& {K_{sp}} = {\left( {2s} \right)^2} \times {\left( {2s} \right)^2} = 16{s^4} \cr
& s = {\left( {\frac{{{K_{sp}}}}{{16}}} \right)^{\frac{1}{4}}} \cr
& BaS{O_4} \rightleftharpoons \mathop {Ba_{}^{2 + }}\limits_s + \mathop {SO}\limits_s \,_4^{2 - } \cr
& {K_{sp}} = {s^2} \cr
& s = \sqrt {{K_{sp}}} \cr
& CrC{l_3} \rightleftharpoons C\mathop {r_{}^{3 + }}\limits_s + 3\mathop {C{l^ - }}\limits_{3s} \cr
& {K_{sp}} = s \times {\left( {3s} \right)^3} = 27{s^4} \cr
& s = {\left( {\frac{{{K_{sp}}}}{{27}}} \right)^{\frac{1}{4}}} \cr} $$
Hence the correct order of solubilities of salts is
$$\sqrt {{K_{sp}}} > {\left( {\frac{{{K_{sp}}}}{{16}}} \right)^{\frac{1}{4}}} > {\left( {\frac{{{K_{sp}}}}{{27}}} \right)^{\frac{1}{4}}} > {\left( {\frac{{{K_{sp}}}}{{108}}} \right)^{\frac{1}{5}}}$$
178.
Species acting as both Bronsted acid and base is
A
$${\left( {HS{O_4}} \right)^{ - 1}}$$
B
$$N{a_2}C{O_3}$$
C
$$N{H_3}$$
D
$$O{H^{ - 1}}$$
Answer :
$${\left( {HS{O_4}} \right)^{ - 1}}$$
View Solution
Discuss Question
$${\left( {HS{O_4}} \right)^ - }$$ can accept and donate a proton
$$\eqalign{
& {\left( {HS{O_4}} \right)^ - } + {H^ + } \to {H_2}S{O_4}\,\,{\text{(acting as base)}} \cr
& {\left( {HS{O_4}} \right)^ - } - {H^ + } \to S{O_4}^{2 - }.\,\,\,\,{\text{(acting as}}\,{\text{acid)}} \cr} $$
179.
Solution of a monobasic acid has a $$pH = 5.$$ If one $$mL$$ of it is diluted to 1 litre, what will be the $$pH$$ of the resulting solution?
A
3.45
B
6.96
C
8.58
D
10.25
Answer :
6.96
View Solution
Discuss Question
$$\eqalign{
& pH = 5,\left[ {{H^ + }} \right] = {10^{ - 5}}\,M \cr
& {\text{After dilution}} = \frac{{{{10}^{ - 5}}}}{{1000}} = {10^{ - 8}}\,M \cr
& {\text{Total}}\left[ {{H^ + }} \right] = {10^{ - 8}} + {10^{ - 7}} = 1.1 \times {10^{ - 7}} \cr
& pH = - \log \left[ {{H^ + }} \right] = - \log \left( {1.1 \times {{10}^{ - 7}}} \right) = 6.96 \cr} $$
180.
The $$pH$$ of $$0.001\,M\,Ba{\left( {OH} \right)_2}$$ solution will be
A
2
B
8.4
C
11.3
D
2.7
Answer :
11.3
View Solution
Discuss Question
$$\eqalign{
& Ba{\left( {OH} \right)_2} \rightleftharpoons B{a^{2 + }} + 2O{H^ - } \cr
& \left[ {O{H^ - }} \right] = 2 \times 1 \times {10^{ - 3}}\,M \cr} $$
$$pOH = - \log \left[ {O{H^ - }} \right]$$ $$ = - \log \left( {2 \times {{10}^{ - 3}}} \right) = 2.7$$
$$pOH + pH = 14 \Rightarrow pH$$ $$ = 14 - 2.7 = 11.3$$