In Arrhenius equation $$k = A{e^{ - \,\frac{{{E_a}}}{{RT}}}},{E_a}$$ is the energy of activation, which is required by the colliding molecules to react resulting in the formation of products.
133.
For the reaction, $$2{N_2}{O_5} \to 4N{O_2} + {O_2},$$ rate and rate constant are $$1.02 \times {10^{ - 4}}$$ and $$3.4 \times {10^{ - 5}}{s^{ - 1}}$$ respectively, then concentration of $${N_2}{O_5}$$ at that time will be
$$Rt = \log {C_o} - \log {C_t}$$
It is clear from the equation that if we plot a graph between $$\log {C_t}$$ and time, a straight line with a slope equal to $$ - \frac{k}{{2.303}}$$ and intercept equal to log $$\left[ {{A_0}} \right]$$ will be obtained.
135.
Consider a first order gas phase decomposition reaction given below :
$${A_{\left( g \right)}} \to {B_{\left( g \right)}} + {C_{\left( g \right)}}$$
The initial pressure of the system before decomposition of $$A$$ was $${p_i}.$$ After lapse of time $$'t'$$ total pressure of the system increased by $$x$$ units and became $$'{p_t}.'$$ The rate constant $$k$$ for the reaction is given as ___________.
A
$$k = \frac{{2.303}}{t}\log \frac{{{p_i}}}{{{p_i} - x}}$$
B
$$k = \frac{{2.303}}{t}\log \frac{{{p_i}}}{{2{p_i} - {p_t}}}$$
C
$$k = \frac{{2.303}}{t}\log \frac{{{p_i}}}{{2{p_i} + {p_t}}}$$
D
$$k = \frac{{2.303}}{t}\log \frac{{{p_i}}}{{{p_i} + x}}$$
If $$x$$ $$atm$$ be the decrease in pressure of $$A$$ at time $$t$$ and one mole each of $$B$$ and $$C$$ is being formed, the increase in pressure of $$B$$ and $$C$$ will also be $$x$$ $$atm$$ each.
\[\begin{matrix}
{} & {{A}_{\left( g \right)}} & \to \\
\text{At}\,\,t=0 & {{p}_{i}}\,\,atm & {} \\
\text{At time}\,\,t & \left( {{p}_{i}}-x \right)atm & {} \\
\end{matrix}\,\,\,\,\,\,\,\,\,\,\begin{matrix}
{{B}_{\left( g \right)}} & + & {{C}_{\left( g \right)}} \\
0\,atm & {} & 0\,atm \\
x\,atm & {} & x\,atm \\
\end{matrix}\]
where, $${p_t}$$ is the initial pressure at time $$t = 0$$
$$\eqalign{
& {p_t} = \left( {{p_i} - x} \right) + x + x = {p_i} + x \cr
& x = \left( {{p_t} - {p_i}} \right) \cr} $$
where, $${p_A} = {p_i} - x = {p_i} - \left( {{p_t} - {p_i}} \right)$$ $$ = 2{p_i} - {p_t}$$
$$\eqalign{
& k = \left( {\frac{{2.303}}{t}} \right)\left( {\log \frac{{{p_i}}}{{{p_A}}}} \right) \cr
& \,\,\,\, = \frac{{2.303}}{t}\log \frac{{{p_i}}}{{\left( {2{p_i} - {p_t}} \right)}} \cr} $$
136.
In a zero order reaction for every $${10^ \circ }C$$ rise of temperature, the rate is doubled. If the temperature is increased from $${10^ \circ }C$$ to $${100^ \circ }C,$$ the rate of the reaction will become
It is a second order reaction, first order both $$w.r.t\,{S_2}O_8^{2 - }$$ and $${I^ - }\,.$$
$$\therefore \,\,r = k\left[ {{S_2}{O_8}^{2 - }} \right]\left[ {{I^ - }} \right]$$
All other options are of first order reaction.
138.
For the reaction, $$3A + 2B + C + D,$$ the differential rate law can be written as :
A
$$\frac{1}{3}\frac{{d\left[ A \right]}}{{dt}} = \frac{{d\left[ C \right]}}{{dt}} = k{\left[ A \right]^n}{\left[ B \right]^m}$$
B
$$ - \frac{{d\left[ A \right]}}{{dt}} = \frac{{d\left[ C \right]}}{{dt}} = k{\left[ A \right]^n}{\left[ B \right]^m}$$
C
$$ + \frac{1}{3}\frac{{d\left[ A \right]}}{{dt}} = - \frac{{d\left[ C \right]}}{{dt}} = k{\left[ A \right]^n}{\left[ B \right]^m}$$
D
$$ - \frac{1}{3}\frac{{d\left[ A \right]}}{{dt}} = \frac{{d\left[ C \right]}}{{dt}} = k{\left[ A \right]^n}{\left[ B \right]^m}$$
Answer :
$$ - \frac{1}{3}\frac{{d\left[ A \right]}}{{dt}} = \frac{{d\left[ C \right]}}{{dt}} = k{\left[ A \right]^n}{\left[ B \right]^m}$$
For the reaction
$$3A + 2B \to C + D$$
Rate of disappearance of $$A=$$ Rate of appearance of $$C$$ reaction
$$\eqalign{
& = - \frac{1}{3}\frac{{d\left[ A \right]}}{{dt}} \cr
& = \frac{{d\left[ C \right]}}{{dt}} \cr
& = k{\left[ A \right]^n}{\left[ B \right]^m} \cr} $$
139.
$$3A \to 2B,$$ rate of reaction $$ + \frac{{d\left[ B \right]}}{{dt}}$$ is equal to
A
$$ - \frac{3}{2}\frac{{d\left[ A \right]}}{{dt}}$$
B
$$ - \frac{2}{3}\frac{{d\left[ A \right]}}{{dt}}$$
C
$$ - \frac{1}{3}\frac{{d\left[ A \right]}}{{dt}}$$
D
$$ + 2\frac{{d\left[ A \right]}}{{dt}}$$
Answer :
$$ - \frac{2}{3}\frac{{d\left[ A \right]}}{{dt}}$$
$$\eqalign{
& {\text{For reaction,}} \cr
& 3A \to 2B \cr} $$
$${\text{Rate}} = - \frac{1}{3}\frac{{d\left[ A \right]}}{{dt}}$$ $${\text{[Rate of disappearance]}}$$
$$\,\,\,\,\,\,\,\,\,\,\,\, = + \frac{1}{2}\frac{{d\left[ B \right]}}{{dt}}$$ $$[{\text{Rate of appearance]}}$$
$$\therefore \,\,{\text{ + }}\frac{{d\left[ B \right]}}{{dt}} = - \frac{2}{3}\frac{{d\left[ A \right]}}{{dt}}$$
140.
The half life for the virus inactivation if in the beginning $$1.5\% $$ of the virus is inactivated per minute is ( Given: The reaction is of first order )
For the first order reaction for small finite change
$${k_1} = \frac{1}{{\left[ A \right]}}\frac{{\Delta \left[ A \right]}}{{\Delta t}} \Rightarrow \frac{{\frac{{\Delta \left[ A \right]}}{{\left[ A \right]}}}}{{\Delta t}} = 1.5\% $$ \[{{\min }^{-1}}\]
\[=0.015\,{{\min }^{-1}}\]
\[{{t}_{\frac{1}{2}}}=\frac{0.693}{0.015\,{{\min }^{-1}}}=46.2\,\min \approx 46\,\min \]