Question

An ideal gas, obeying kinetic theory of gases cannot be liquefied, because

A. it solidifies before becoming a liquid
B. forces acting between its molecules are negligible  
C. its critical temperature is above $$0{\,^ \circ }C$$
D. its molecules are relatively small in size.
Answer :   forces acting between its molecules are negligible
Solution :
A gas can only be liquefied, if some forces of attraction are acting in its molecules. Since an ideal gas is devoid of force of attraction in its molecules, therefore it cannot be liquefied.

Releted MCQ Question on
Physical Chemistry >> States of Matter Solid, Liquid and Gas

Releted Question 1

Equal weights of methane and oxygen are mixed in an empty container at $${25^ \circ }C.$$  The fraction of the total pressure exerted by oxygen is

A. $$\frac{1}{3}$$
B. $$\frac{1}{2}$$
C. $$\frac{2}{3}$$
D. $$\frac{1}{3} \times \frac{{273}}{{298}}$$
Releted Question 2

The temperature at which a real gas obeys the ideal gas laws over a wide range of pressure is

A. Critical temperature
B. Boyle temperature
C. Inversion temperature
D. Reduced temperature
Releted Question 3

The ratio of root mean square velocity to average velocity of a gas molecule at a particular temperature is

A. 1.086 : 1
B. 1 : 1.086
C. 2 : 1.086
D. 1.086 : 2
Releted Question 4

Helium atom is two times heavier than a hydrogen molecule. At $$298 K,$$  the average kinetic energy of a helium atom is

A. two times that of a hydrogen molecule.
B. same as that of a hydrogen molecule.
C. four times that of a hydrogen molecule.
D. half that of a hydrogen molecule.

Practice More Releted MCQ Question on
States of Matter Solid, Liquid and Gas


Practice More MCQ Question on Chemistry Section