Question
An alkane $${C_6}{H_{14}}$$ gives two monochloro derivatives on chlorination. Its possible structure is
A.
$$C{H_3}C{H_2}C{H_2}C{H_2}C{H_2}C{H_3}$$
B.
\[C{{H}_{3}}\underset{\begin{smallmatrix}
|\,\,\,\,\, \\
C{{H}_{3}}
\end{smallmatrix}}{\mathop{-CH-}}\,C{{H}_{2}}C{{H}_{2}}C{{H}_{3}}\]
C.
\[\underset{\begin{smallmatrix}
|\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \\
C{{H}_{2}}C{{H}_{3}}\,\,\,\,
\end{smallmatrix}}{\mathop{C{{H}_{3}}-CH-C{{H}_{2}}C{{H}_{3}}}}\,\]
D.
\[C{{H}_{3}}\overset{\begin{smallmatrix}
\,\,C{{H}_{3}} \\
|\,\,\,\,
\end{smallmatrix}}{\mathop{-CH-}}\,\overset{\begin{smallmatrix}
C{{H}_{3}}\,\, \\
|\,\,\,\,\,\,\,\,
\end{smallmatrix}}{\mathop{CH-}}\,C{{H}_{3}}\]
Answer :
\[C{{H}_{3}}\overset{\begin{smallmatrix}
\,\,C{{H}_{3}} \\
|\,\,\,\,
\end{smallmatrix}}{\mathop{-CH-}}\,\overset{\begin{smallmatrix}
C{{H}_{3}}\,\, \\
|\,\,\,\,\,\,\,\,
\end{smallmatrix}}{\mathop{CH-}}\,C{{H}_{3}}\]
Solution :
\[C{{H}_{3}}\overset{\begin{smallmatrix}
\,\,C{{H}_{3}} \\
|\,\,\,\,
\end{smallmatrix}}{\mathop{-CH-}}\,\overset{\begin{smallmatrix}
C{{H}_{3}}\,\, \\
|\,\,\,\,\,\,\,\,
\end{smallmatrix}}{\mathop{CH-}}\,C{{H}_{3}}\xrightarrow{C{{l}_{2}}}\]
\[C{{H}_{3}}\overset{\begin{smallmatrix}
C{{H}_{3}} \\
|\,\,\,\,\,
\end{smallmatrix}}{\mathop{-CH-}}\,\underset{\begin{smallmatrix}
|\,\,\,\,\, \\
Cl\,\,\,\,\,
\end{smallmatrix}}{\overset{\begin{smallmatrix}
C{{H}_{3}} \\
|\,\,\,\,\,
\end{smallmatrix}}{\mathop{C-}}}\,C{{H}_{3}}\,\,+\] \[ClC{{H}_{2}}\overset{\begin{smallmatrix}
C{{H}_{3}} \\
|\,\,\,\,\,
\end{smallmatrix}}{\mathop{-CH-}}\,\overset{\begin{smallmatrix}
C{{H}_{3}}\,\, \\
|\,\,\,\,\,\,\,\,
\end{smallmatrix}}{\mathop{CH-}}\,C{{H}_{3}}\]