Question
A first order reaction has a specific reaction rate of $${10^{ - 2}}{s^{ - 1}}.$$ How much time will it take for $$20$$ $$g$$ of the reactant to reduce to $$5$$ $$g?$$
A.
238.6$$\,s$$
B.
138.6$$\,s$$
C.
346.5$$\,s$$
D.
693.0$$\,s$$
Answer :
138.6$$\,s$$
Solution :
$$\eqalign{
& {\text{For a first order reaction,}} \cr
& {\text{Rate constant }}\left( k \right) = \frac{{2.303}}{t}{\text{log}}\frac{a}{{a - x}} \cr
& {\text{where, }}a = {\text{initial concentration}} \cr
& a - x = {\text{concentration after time}}\,'t' \cr
& t = {\text{time in sec}}{\text{.}} \cr
& {\text{Given,}}\,a = 20\,g,\,a - x = 5\,g,\,k = {10^{ - 2}} \cr
& \therefore \,\,t = \frac{{2.303}}{{{{10}^{ - 2}}}}{\text{log}}\,\frac{{20}}{5} \cr
& \,\,\,\,\,\,\,\,\,\, = 138.6\,s \cr
& {\text{Alternatively,}} \cr
& {\text{Half - life for the first order reaction,}} \cr
& \frac{{{t_{\frac{1}{2}}}}}{2} = \frac{{0.693}}{k} \cr
& \,\,\,\,\,\,\,\, = \frac{{0.693}}{{{{10}^{ - 2}}}} \cr
& \,\,\,\,\,\,\,\, = 69.3s \cr} $$
Two half-lives are required for the reduction of $$20$$ $$g$$ of reactant into $$5$$ $$g.$$
\[20\,g\xrightarrow{{{t}_{\frac{1}{2}}}}10\,g\xrightarrow{{{t}_{\frac{1}{2}}}}5\,g.\]
$$\therefore {\text{Total time}} = 2{t_{\frac{1}{2}}} = 2 \times 69.3 = 138.6\,s$$