Question
A $$5A$$ current is passed through a solution of zinc sulphate for $$40$$ $$min.$$ The amount of $$zinc$$ deposited at the cathode is
A.
40.65$$\,g$$
B.
0.4065$$\,g$$
C.
4.065$$\,g$$
D.
65.04$$\,g$$
Answer :
4.065$$\,g$$
Solution :
$$\eqalign{
& {\text{Current,}}\,I = 5\,A \cr
& {\text{time, }}t = 40\min = 40 \times 60{\text{ = }}2400{\text{ }}s \cr
& {\text{Amount of electricity passed}} \cr
& Q = It \cr
& Q = 5 \times 2400 \cr
& Q = 12000\,C. \cr
& Z{n^{2 + }} + 2{e^ - } \to Zn \cr
& n = 2{e^ - } \cr
& {\text{From Faraday first law}} \cr
& W = Z\,I\,t \cr} $$
$$Z = {\text{equivalent mass}}$$ $$\left[ {65.39 = {\text{mass of zinc}}} \right]$$
$$\eqalign{
& \,\,\,\,\,\,\, = \frac{{Mass}}{{{e^ - } \times F}} \cr
& \,\,\,\,\,\,\, = \frac{{65.39}}{{2 \times 96500}}\,g\,\,{\text{of }}zinc \cr
& {\text{therefore, }}12000{\text{ }}C{\text{ charge will deposite}} \cr
& {\text{ = }}\frac{{65.39 \times 12000}}{{2 \times 96500}} \cr
& = 4.065\,g\,\,{\text{of }}zinc. \cr} $$