Question

Wien’s displacement law expresses relation between

A. wavelength corresponding to maximum energy and absolute temperature  
B. radiated energy and wavelength
C. emissive power and temperature
D. colour of light and temperature
Answer :   wavelength corresponding to maximum energy and absolute temperature
Solution :
According to Wien’s displacement law, the quantity of energy radiated out by a body is not uniformly distributed over all the wavelengths emitted by it. It is maximum for a particular wavelength $$\left( \lambda \right),$$  which is different at different temperatures. As the temperature is increased, the value of the wavelength which carries maximum energy is decreased.
The statement of this law is as follows
“The wavelength corresponding to maximum energy is inversely proportional to the absolute temperature of the body.”
i.e. $${\lambda _m} \propto \frac{1}{T}\,\,{\text{or}}\,\,{\lambda _m}T = {\text{constant}}$$

Releted MCQ Question on
Heat and Thermodynamics >> Radiation

Releted Question 1

Two metallic spheres $${S_1}$$ and $${S_2}$$ are made of the same material and have got identical surface finish. The mass of $${S_1}$$ is thrice that of $${S_2}.$$ Both the spheres are heated to the same high temperature and placed in the same room having lower temperature but are thermally insulated from each other. The ratio of the initial rate of cooling of $${S_1}$$ to that of $${S_2}$$ is

A. $$\frac{1}{3}$$
B. $${\frac{1}{{\sqrt 3 }}}$$
C. $${\frac{{\sqrt 3 }}{1}}$$
D. $${\left( {\frac{1}{3}} \right)^{\frac{1}{3}}}$$
Releted Question 2

A spherical black body with a radius of $$12\,cm$$  radiates 450 $$W$$ power at 500 $$K.$$ if the radius were halved and the temperature doubled, the power radiated in watt would be

A. 225
B. 450
C. 900
D. 1800
Releted Question 3

A spherical black body with a radius of $$12\,cm$$  radiates $$450\,W$$  power at 500 $$K.$$ If the radius were halved and the temperature doubled, the power radiated in watt would be

A. 225
B. 450
C. 900
D. 1800
Releted Question 4

The plots of intensity versus wavelength for three black bodies at temperature $${T_1},$$ $${T_2}$$ and $${T_3}$$ respectively are as shown. Their temperatures are such that
Radiation mcq question image

A. $${T_1} > {T_2} > {T_3}$$
B. $${T_1} > {T_3} > {T_2}$$
C. $${T_2} > {T_3} > {T_1}$$
D. $${T_3} > {T_2} > {T_1}$$

Practice More Releted MCQ Question on
Radiation


Practice More MCQ Question on Physics Section