Question
Velocity of sound waves in air is $$330\,m/s.$$ For a particular sound wave in air, path difference of $$40\,cm$$ is equivalent to phase difference of $$1.6\,\pi .$$ The frequency of this wave is
A.
$$165\,Hz$$
B.
$$150\,Hz$$
C.
$$660\,Hz$$
D.
$$330\,Hz$$
Answer :
$$660\,Hz$$
Solution :
At a given time ($$t$$ = constant), the phase changes with position $$x.$$ The phase change $$\left( {\Delta \phi } \right)$$ at a given time for a wavelength $$\left( \lambda \right)$$ for a distance $$\Delta x$$ is given by
$$\eqalign{
& \Delta \phi = \frac{{2\pi }}{\lambda }\Delta x\,.......\left( {\text{i}} \right) \cr
& {\text{From}}\,{\text{Eq}}{\text{.}}\,\left( {\text{i}} \right) \cr
& \Delta x = \frac{\lambda }{{2\,\pi }} \cdot \Delta \phi \,\,{\text{or}}\,\,\lambda = 2\,\pi \cdot \frac{{\Delta x}}{{\Delta \phi }} \cr
& {\text{Here,}}\,\,\Delta x = 0.4\,m \cr
& \Delta \phi = 1.6\,\pi \cr
& \therefore \lambda = 2\,\pi \cdot \frac{{0.4}}{{1.6\,\pi }} = 0.5 \cr
& \therefore {\text{Frequency of wave is }}\nu = \frac{v}{\lambda } = \frac{{330}}{{0.5}} = 660\,Hz \cr
& {\text{where,}}\,\,v = 330\,m/s = {\text{velocity}}\,{\text{of}}\,{\text{sound}} \cr} $$