Question
Two simple pendulums of length $$0.5\,m$$ and $$2.0\,m$$ respectively are given small linear displacement in one direction at the same time. They will again be in the same phase when the pendulum of shorter length has completed oscillations
A.
5
B.
1
C.
2
D.
3
Answer :
2
Solution :
For the pendulum to be again in the same phase, there should be difference of one complete oscillation.
If smaller pendulum completes $$n$$ oscillations the larger pendulum will complete $$\left( {n - 1} \right)$$ oscillations, so Time period of $$n$$ oscillations of first = Time period of $$\left( {n - 1} \right)$$ oscillations of second
$$\eqalign{
& {\text{i}}{\text{.e}}{\text{.}}\,\,n{T_1} = \left( {n - 1} \right){T_2} \cr
& {\text{or}}\,\,n2\pi \sqrt {\frac{{{l_1}}}{g}} = \left( {n - 1} \right)2\pi \sqrt {\frac{{{l_2}}}{g}} \cr
& {\text{or}}\,\,n\sqrt {{l_1}} = \left( {n - 1} \right)\sqrt {{l_2}} \cr
& {\text{or}}\,\,\frac{n}{{n - 1}} = \sqrt {\frac{{{l_2}}}{{{l_1}}}} = \sqrt {\frac{{2.0}}{{0.5}}} \cr
& {\text{or}}\,\,\frac{n}{{n - 1}} = 2 \cr
& {\text{or}}\,\,n = 2\,n - 2 \cr
& \therefore n = 2 \cr} $$