Question
Two particles are projected with same initial velocities at an angle $${30^ \circ }$$ and $${60^ \circ }$$ with the horizontal. Then,
A.
their heights will be equal
B.
their ranges will be equal
C.
their time of flights will be equal
D.
their ranges will be different
Answer :
their ranges will be equal
Solution :
(a) Maximum height in case of projectile is given by
$$\eqalign{
& H = \frac{{{u^2}{{\sin }^2}\theta }}{{2g}} \Rightarrow \frac{{{H_1}}}{{{H_2}}} = \frac{{{{\sin }^2}{\theta _1}}}{{{{\sin }^2}{\theta _2}}} = \frac{{{{\sin }^2}{{30}^ \circ }}}{{{{\sin }^2}{{60}^ \circ }}} \cr
& = \frac{{{{\left( {\frac{1}{2}} \right)}^2}}}{{{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}} = \frac{1}{3} \cr} $$
(b) Range $$R = \frac{{{u^2}\sin 2\theta }}{g}$$
$$\eqalign{
& \Rightarrow \frac{{{R_1}}}{{{R_2}}} = \frac{{\sin \left( {2 \times {{30}^ \circ }} \right)}}{{\sin \left( {2 \times {{60}^ \circ }} \right)}} \cr
& = \frac{{\sin {{60}^ \circ }}}{{\sin {{120}^ \circ }}} = \frac{{\frac{{\sqrt 3 }}{2}}}{{\frac{{\sqrt 3 }}{2}}} = 1 \cr
& \Rightarrow {R_1} = {R_2} \cr} $$
(c) Time of flight $$T = \frac{{2u\sin \theta }}{g}$$
$$\eqalign{
& \Rightarrow \frac{{{T_1}}}{{{T_2}}} = \frac{{\sin {\theta _1}}}{{\sin {\theta _2}}} \cr
& = \frac{{\sin {{30}^ \circ }}}{{\sin {{60}^ \circ }}} = \frac{{\frac{1}{2}}}{{\frac{{\sqrt 3 }}{2}}} = \frac{1}{{\sqrt 3 }} \cr} $$
Hence, their horizontal ranges will be equal.
Alternative
In this problem, it is given that two particles are projected at angles $${{{30}^ \circ }}$$ and $${{{60}^ \circ }}$$ which are complementary angles. We know that horizontal range will be same for complementary angles. Hence, their ranges will be equal.