Question
Two moles of an ideal monoatomic gas occupies a volume $$V$$ at $${27^ \circ }C.$$ The gas expands adiabatically to a volume $$2V.$$ Calculate $$(a)$$ the final temperature of the gas and $$(b)$$ change in its internal energy.
A.
(a) 189 $$K$$ (b) 2.7 $$kJ$$
B.
(a) 195 $$K$$ (b) $$- 2.7 kJ$$
C.
(a) 189 $$K$$ (b) $$- 2.7 kJ$$
D.
(a) $$195 K$$ (b) $$2.7 kJ$$
Answer :
(a) 189 $$K$$ (b) $$- 2.7 kJ$$
Solution :
In an adiabatic process
$$\eqalign{
& T{V^{\gamma - 1}} = {\text{Constant}} \cr
& {\text{or, }}{T_1}{V_1}^{\gamma - 1} = {T_2}{V_2}^{\gamma - 1} \cr} $$
For monoatomic gas $$\gamma = \frac{5}{3}$$
$$\eqalign{
& \left( {300} \right){V^{\frac{2}{3}}} = {T_2}{\left( {2\,V} \right)^{\frac{2}{3}}} \cr
& \Rightarrow \,\,{T_2} = \frac{{300}}{{{{\left( 2 \right)}^{\frac{2}{3}}}}} \cr} $$
$${T_2} = 189K$$ (final temperature)
Change in internal energy $$\Delta U = n\frac{f}{2}R\,\Delta T$$
$$\eqalign{
& = 2\left( {\frac{3}{2}} \right)\left( {\frac{{25}}{3}} \right)\left( { - 111} \right) \cr
& = - 2.7\,kJ \cr} $$