Solution :
A circuit equivalent to the given circuit can be drawn as follows :
Where
$$\eqalign{
& {R_{{\text{eq}}}} = R + \frac{{2R \times 2R}}{{4R}} = R + R \cr
& {R_{{\text{eq}}}} = 2R \cr} $$
∴ Time constant $$ = \frac{L}{{2R}}$$
Releted MCQ Question on Electrostatics and Magnetism >> Alternating Current
Releted Question 1
When an $$AC$$ source of emf $$e = {E_0}\sin \left( {100t} \right)$$ is connected across a circuit, the phase difference between the emf $$e$$ and the current $$i$$ in the circuit is observed to be $$\frac{\pi }{4},$$ as shown in the diagram. If the circuit consists possibly only of $$R - C$$ or $$R - L$$ or $$L - C$$ in series, find the relationship between the two elements
An $$AC$$ voltage source of variable angular frequency $$\omega $$ and fixed amplitude $${V_0}$$ is connected in series with a capacitance $$C$$ and an electric bulb of resistance $$R$$ (inductance zero). When $$\omega $$ is increase
In a transformer, number of turns in the primary coil are 140
and that in the secondary coil are 280. If current in primary coil is $$4A,$$ then that in the secondary coil is