Question

Three concentric spherical shells have radii $$a,b$$  and $$c\left( {a < b < c} \right)$$   and have surface charge densities $$\sigma , - \sigma $$  and $$\sigma $$ respectively. If $${V_A},{V_B}$$  and $${V_C}$$ denote the potentials of the three shells, then for $$c = a + b,$$   we have

A. $${V_C} = {V_A} \ne {V_B}$$
B. $${V_C} = {V_B} \ne {V_A}$$
C. $${V_C} \ne {V_B} \ne {V_A}$$
D. $${V_C} = {V_B} = {V_A}$$  
Answer :   $${V_C} = {V_B} = {V_A}$$
Solution :
$$\eqalign{ & {V_A} = \frac{1}{{4\pi {\varepsilon _0}}}\frac{{\sigma 4\pi {a^2}}}{a} - \frac{1}{{4\pi {\varepsilon _0}}}\frac{{\sigma 4\pi {b^2}}}{b} + \frac{1}{{4\pi {\varepsilon _0}}} \cdot \frac{{\sigma 4\pi {c^2}}}{c} \cr & = \frac{\sigma }{{{\varepsilon _0}}}\left( {a - b + c} \right) = \frac{\sigma }{{{\varepsilon _0}}}\left( {2a} \right)\,\,\,\,\left( {\because c = a + b} \right) \cr & {V_B} = \frac{1}{{4\pi {\varepsilon _0}}} \cdot \frac{{\sigma 4\pi {a^2}}}{c} - \frac{1}{{4\pi {\varepsilon _0}}}\frac{{\sigma 4\pi {b^2}}}{b} + \frac{1}{{4\pi {\varepsilon _0}}} \cdot \frac{{\sigma 4\pi {c^2}}}{c} \cr & = \frac{\sigma }{{{\varepsilon _0}}}\left( {\frac{{{a^2}}}{c} - b + c} \right) = \frac{\sigma }{{{\varepsilon _0}}}\left( {2a} \right)\,\,\,\,\left( {\because c = a + b} \right) \cr} $$
$$\eqalign{ & {\text{and}}\,\,{V_C} = \frac{1}{{4\pi {\varepsilon _0}}} \cdot \frac{{\sigma 4\pi {a^2}}}{c} - \frac{1}{{4\pi {\varepsilon _0}}}\frac{{\sigma 4\pi {b^2}}}{c} + \frac{1}{{4\pi {\varepsilon _0}}} \cdot \frac{{\sigma 4\pi {c^2}}}{c} \cr & = \frac{\sigma }{{{\varepsilon _0}}}\left( {\frac{{{a^2}}}{c} - \frac{{{b^2}}}{c} + c} \right) = \frac{\sigma }{{{\varepsilon _0}}}\left( {2a} \right)\,\,\,\,\left( {\because c = a + b} \right) \cr & {\text{Hence,}}\,\,{V_A} = {V_C} = {V_B} \cr} $$

Releted MCQ Question on
Electrostatics and Magnetism >> Electric Potential

Releted Question 1

If potential (in volts) in a region is expressed as $$V\left( {x,y,z} \right) = 6xy - y + 2yz,$$      electric field (in $$N/C$$ ) at point $$\left( {1,1,0} \right)$$  is

A. $$ - \left( {3\hat i + 5\hat j + 3\hat k} \right)$$
B. $$ - \left( {6\hat i + 5\hat j + 2\hat k} \right)$$
C. $$ - \left( {2\hat i + 3\hat j + \hat k} \right)$$
D. $$ - \left( {6\hat i + 9\hat j + \hat k} \right)$$
Releted Question 2

A conducting sphere of radius $$R$$ is given a charge $$Q.$$ The electric potential and the electric field at the centre of the sphere respectively are

A. zero and $$\frac{Q}{{4\pi {\varepsilon _0}{R^2}}}$$
B. $$\frac{Q}{{4\pi {\varepsilon _0}R}}$$  and zero
C. $$\frac{Q}{{4\pi {\varepsilon _0}R}}{\text{and}}\frac{Q}{{4\pi {\varepsilon _0}{R^2}}}$$
D. Both and zero
Releted Question 3

In a region, the potential is represented by $$V\left( {x,y,z} \right) = 6x - 8xy - 8y + 6yz,$$       where $$V$$ is in volts and $$x,y,z$$  are in metres. The electric force experienced by a charge of $$2C$$ situated at point $$\left( {1,1,1} \right)$$  is

A. $$6\sqrt 5 N$$
B. $$30\,N$$
C. $$24\,N$$
D. $$4\sqrt {35} \,N$$
Releted Question 4

Four point charges $$ - Q, - q,2q$$   and $$2Q$$  are placed, one at each corner of the square. The relation between $$Q$$ and $$q$$ for which the potential at the centre of the square is zero, is

A. $$Q = - q$$
B. $$Q = - \frac{1}{q}$$
C. $$Q = q$$
D. $$Q = \frac{1}{q}$$

Practice More Releted MCQ Question on
Electric Potential


Practice More MCQ Question on Physics Section