Question

The potential energy of a simple harmonic oscillator when the particle is half way to its end point is
(where, $$E$$ is the total energy)

A. $$\frac{1}{4}E$$  
B. $$\frac{1}{2}E$$
C. $$\frac{2}{3}E$$
D. $$\frac{1}{8}E$$
Answer :   $$\frac{1}{4}E$$
Solution :
Potential energy of a simple harmonic oscillator
$$U = \frac{1}{2}m{\omega ^2}{x^2}$$
Kinetic energy of a simple harmonic oscillator
$$K = \frac{1}{2}m{\omega ^2}\left( {{a^2} - {x^2}} \right)$$
Here,
$$x =$$  Displacement from mean position
$$a =$$  Maximum displacement
(or amplitude) from mean position
Total energy is
$$\eqalign{ & E = U + K = \frac{1}{2}m{\omega ^2}{x^2} + \frac{1}{2}m{\omega ^2}\left( {{a^2} - {x^2}} \right) \cr & = \frac{1}{2}m{\omega ^2}{a^2} \cr} $$
When the particle is half way to its end point i.e. at half of its amplitude, then $$x = \frac{a}{2}$$
Hence, potential energy
$$\eqalign{ & U = \frac{1}{2}m{\omega ^2}{\left( {\frac{a}{2}} \right)^2} = \frac{1}{4}\left( {\frac{1}{2}m{\omega ^2}{a^2}} \right) \cr & \Rightarrow U = \frac{E}{4} \cr} $$

Releted MCQ Question on
Oscillation and Mechanical Waves >> Simple Harmonic Motion (SHM)

Releted Question 1

Two bodies $$M$$ and $$N$$ of equal masses are suspended from two separate massless springs of spring constants $${k_1}$$ and $${k_2}$$ respectively. If the two bodies oscillate vertically such that their maximum velocities are equal, the ratio of the amplitude of vibration of $$M$$ to that of $$N$$ is

A. $$\frac{{{k_1}}}{{{k_2}}}$$
B. $$\sqrt {\frac{{{k_1}}}{{{k_2}}}} $$
C. $$\frac{{{k_2}}}{{{k_1}}}$$
D. $$\sqrt {\frac{{{k_2}}}{{{k_1}}}} $$
Releted Question 2

A particle free to move along the $$x$$-axis has potential energy given by $$U\left( x \right) = k\left[ {1 - \exp \left( { - {x^2}} \right)} \right]$$      for $$ - \infty \leqslant x \leqslant + \infty ,$$    where $$k$$ is a positive constant of appropriate dimensions. Then

A. at points away from the origin, the particle is in unstable equilibrium
B. for any finite nonzero value of $$x,$$ there is a force directed away from the origin
C. if its total mechanical energy is $$\frac{k}{2},$$  it has its minimum kinetic energy at the origin.
D. for small displacements from $$x = 0,$$  the motion is simple harmonic
Releted Question 3

The period of oscillation of a simple pendulum of length $$L$$ suspended from the roof of a vehicle which moves without friction down an inclined plane of inclination $$\alpha ,$$ is given by

A. $$2\pi \sqrt {\frac{L}{{g\cos \alpha }}} $$
B. $$2\pi \sqrt {\frac{L}{{g\sin \alpha }}} $$
C. $$2\pi \sqrt {\frac{L}{g}} $$
D. $$2\pi \sqrt {\frac{L}{{g\tan \alpha }}} $$
Releted Question 4

A particle executes simple harmonic motion between $$x = - A$$  and $$x = + A.$$  The time taken for it to go from 0 to $$\frac{A}{2}$$ is $${T_1}$$ and to go from $$\frac{A}{2}$$ to $$A$$ is $${T_2.}$$ Then

A. $${T_1} < {T_2}$$
B. $${T_1} > {T_2}$$
C. $${T_1} = {T_2}$$
D. $${T_1} = 2{T_2}$$

Practice More Releted MCQ Question on
Simple Harmonic Motion (SHM)


Practice More MCQ Question on Physics Section